III B.Tech II Semester Examinations,December 2010 WATER RESOURCES ENGINEERING-II
 Civil Engineering

Time: 3 hours

Answer any FIVE Questions
 All Questions carry equal marks

1. The following are the details of the section of a gravity dam. Calculate
i)Maximum vertical stress at the heel and toe of the dam.
ii) Major principal stress at the toe of the dam.
iii) Intensity of shear stress on a horizontal plane near the toe.

RL of top of dam $=584.00 \mathrm{~m}$
Top width $=6 \mathrm{~m}$;
u / s face is vertical;
$R L$ of water level on $u / s=580.00 \mathrm{~m}$.
The batter on the d / s face starts from RL of 575.00 m ;
Slope of d/s batter $=2 \mathrm{H}: 3 \mathrm{~V}$;
RL of Tail water level $=506,00 \mathrm{~m}$
The horizontal distance between u / s face and center line of drain holes is 8 m .
Consider reservoir full condition and neglect earthquake, silt pressure and wave pressure effects.
Assume any other data not given.
2. Write short notes on
(a) Rock toe
(b) Horizontal drainage blanket
(c) Cut-off trench
(d) Rip-rap.
3. Design a cross-regulator and the head regulator for a distributory from the following data.
Discharge of parent channel $=110$ cumecs
Discharge of distributory $=15$ cumecs
F.S.L. of parent channel U/S / D/S $=200.00 / 199.80$

Bed width of parent channel U/S / D/S $=45 \mathrm{~m} / 40 \mathrm{~m}$.
4. Write short notes on the following:
(a) Dropping shutters
(b) Stop logs

Also draw the relevant sketches
5. (a) State the fundamental difference between Khosla's theory and Bligh's creep theory for seepage flow below a weir.
(b) Explain the design of a weir on permeable foundations for surface flow conditions.
6. Design an open flume outlet with a discharge of 0.07 cumecs on a distributary channel with a full supply depth of 1.0 m . The available working head is 0.20 m .
[16]
7. A canal syphon has the following data
(a) Canal Particulars
(b) Drainage Particulars

Assume other suitable data. Design draunage and cannel waterway, levels and roof barrel for the structure.
8. Explain the mass curve method that can be used for determining:
(a) Reservoir capacity for fulfilling given demand?
(b) Demand rate from a reservoir of a given capacity

III B.Tech II Semester Examinations,December 2010 WATER RESOURCES ENGINEERING-II Civil Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. A canal syphon has the following data
(a) Canal Particulars $\left.\quad \begin{array}{ll}\text { Full supply discharge } & =110.00 \text { cumees } \\ \text { Full supply level } & =203.00 \\ \text { Bed level } & =200 \mathrm{~m} \\ \text { Bed width } & =25.0 \mathrm{~m} \\ \text { (b) Drainage Particulars } \quad \text { High flood discharge } & =100 \text { cumecs } \\ \text { Bed level } & =202.00 \\ \text { High flood level } & =204.00\end{array}\right)$. Assume other suitable data. Design draunage and cannel waterway, levels and roof barrel for the structure.
2. Write short notes on the following:
(a) Dropping shutters
(b) Stop logs

Also draw the relevant sketches
3. Write short notes on
(a) Rock toe
(b) Horizontal drainage blanket
(c) Cut-off trench
(d) Rip-rap.
4. (a) State the fundamental difference between Khosla's theory and Bligh's creep theory for seepage flow below a weir.
(b) Explain the design of a weir on permeable foundations for surface flow conditions.
[8+8]
5. Design an open flume outlet with a discharge of 0.07 cumecs on a distributary channel with a full supply depth of 1.0 m . The available working head is 0.20 m .
6. Explain the mass curve method that can be used for determining:
(a) Reservoir capacity for fulfilling given demand?
(b) Demand rate from a reservoir of a given capacity
7. The following are the details of the section of a gravity dam. Calculate
i)Maximum vertical stress at the heel and toe of the dam.
ii)Major principal stress at the toe of the dam.
iii) Intensity of shear stress on a horizontal plane near the toe.

RL of top of dam $=584.00 \mathrm{~m}$
Top width $=6 \mathrm{~m}$;
u / s face is vertical;
$R L$ of water level on $u / s=580.00 \mathrm{~m}$.
The batter on the d/s face starts from RL of 575.00 m ;
Slope of d / s batter $=2 \mathrm{H}: 3 \mathrm{~V}$;
RL of Tail water level $=506.00 \mathrm{~m}$
The horizontal distance between u / s face and center line of drain holes is 8 m .
Consider reservoir full condition and neglect earthquake, silt pressure and wave pressure effects.
Assume any other data not given.
8. Design a cross-regulator and the head regulator for a distributory from the following data.
Discharge of parent channel $=110$ cumecs
Discharge of distributory $=15$ cumeos
F.S.L. of parent channel U/S $/ D / S=200.00 / 199.80$

Bed width of parent channel $\mathrm{U} / \mathrm{S} \downarrow \mathrm{D} / \mathrm{S}=45 \mathrm{~m} / 40 \mathrm{~m}$.

III B.Tech II Semester Examinations,December 2010
 WATER RESOURCES ENGINEERING-II
 Civil Engineering

Time: 3 hours

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) State the fundamental difference between Khosla's theory and Bligh's creep theory for seepage flow below a weir.
(b) Explain the design of a weir on permeable foundations for surface flow conditions.
2. Design a cross-regulator and the head regulator for a distributory from the following data.
Discharge of parent channel $=110$ cumecs
Discharge of distributory $=15$ cumecs
F.S.L. of parent channel U/S / D/S $=200.00 / 199.80$

Bed width of parent channel U/S $/ \mathrm{D} / \mathrm{S}=45 \mathrm{~m} / 40 \mathrm{~m}$.
3. Explain the mass curve method that can be used for determining:
(a) Reservoir capacity for fulfilling given demand?
(b) Demand rate from a reservoir of a given capacity
4. Design an open flume outlet with a discharge of 0.07 cumecs on a distributary channel with a full supply depth of 1.0 m . The available working head is 0.20 m .
5. The following are the details of the section of a gravity dam. Calculate
i)Maximum vertical stress at the heel and toe of the dam.
ii)Major principal stress at the toe of the dam.
iii) Intensity of shear stress on a horizontal plane near the toe.

RL of top of dam $=584.00 \mathrm{~m}$
Top width $=6 \mathrm{~m}$;
u / s face is vertical;
RL of water level on $\mathrm{u} / \mathrm{s}=580.00 \mathrm{~m}$.
The batter on the d/s face starts from RL of 575.00 m ;
Slope of d / s batter $=2 \mathrm{H}: 3 \mathrm{~V}$;
RL of Tail water level $=506.00 \mathrm{~m}$
The horizontal distance between u / s face and center line of drain holes is 8 m .
Consider reservoir full condition and neglect earthquake, silt pressure and wave pressure effects.
Assume any other data not given.
6. Write short notes on the following:
(a) Dropping shutters
(b) Stop logs

Also draw the relevant sketches
7. Write short notes on
(a) Rock toe
(b) Horizontal drainage blanket
(c) Cut-off trench
(d) Rip-rap.
8. A canal syphon has the following data

III B.Tech II Semester Examinations,December 2010
 WATER RESOURCES ENGINEERING-II
 Civil Engineering

Time: 3 hours

Answer any FIVE Questions
 All Questions carry equal marks

1. Design an open flume outlet with a discharge of 0.07 cumecs on a distributary channel with a full supply depth of 1.0 m . The available working head is 0.20 m .
2. Write short notes on
(a) Rock toe
(b) Horizontal drainage blanket
(c) Cut-off trench
(d) Rip-rap.
3. Design a cross-regulator and the head regulator for a distributory from the following data.
Discharge of parent channel $=110$ cumecs
Discharge of distributory $=15$ cumecs
F.S.L. of parent channel U/S / D/S $=200.00 / 199.80$

Bed width of parent channel $\mathrm{U} / \mathrm{S} / \mathrm{D} / \mathrm{S}=45 \mathrm{~m} / 40 \mathrm{~m}$.
4. (a) State the fundamental difference between Khosla's theory and Bligh's creep theory for seepage flow below a weir.
(b) Explain the design of a weir on permeable foundations for surface flow conditions.
5. The following are the details of the section of a gravity dam. Calculate
i)Maximum vertical stress at the heel and toe of the dam.
ii)Major principal stress at the toe of the dam.
iii) Intensity of shear stress on a horizontal plane near the toe.

RL of top of dam $=584.00 \mathrm{~m}$
Top width $=6 \mathrm{~m}$;
u / s face is vertical;
RL of water level on $\mathrm{u} / \mathrm{s}=580.00 \mathrm{~m}$.
The batter on the d/s face starts from RL of 575.00 m ;
Slope of d / s batter $=2 \mathrm{H}: 3 \mathrm{~V}$;
RL of Tail water level $=506.00 \mathrm{~m}$
The horizontal distance between u / s face and center line of drain holes is 8 m . Consider reservoir full condition and neglect earthquake, silt pressure and wave
pressure effects.
Assume any other data not given.
6. Explain the mass curve method that can be used for determining:
(a) Reservoir capacity for fulfilling given demand?
(b) Demand rate from a reservoir of a given capacity
7. A canal syphon has the following data
(b) Drainage Particulars

Full supply discharge	$=110.00$ cumecs
Full supply level	$=203.00$
Bed level	$=200 \mathrm{~m}$
Bed width	$=25.0 \mathrm{~m}$
High flood discharge	$=100$ cumees
Bed level	$=202.00$
h flood level	$=204.00$

Assume other suitable data. Design draunage and cannel waterway, levels and roof barrel for the structure.
8. Write short notes on the following;
(a) Dropping shutters
(b) Stop logs

Also draw the relevant sketches

