R05

Set No. 2

III B.Tech II Semester Examinations, December 2010 WATER RESOURCES ENGINEERING-II **Civil Engineering**

Time: 3 hours

Code No: R05320104

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

1. The following are the details of the section of a gravity dam. Calculate

i)Maximum vertical stress at the heel and toe of the dam. ii)Major principal stress at the toe of the dam. iii) Intensity of shear stress on a horizontal plane near the toe. RL of top of dam = 584.00 m Top width = 6 m;u/s face is vertical; RL of water level on u/s = 580.00 m. The batter on the d/s face starts from RL of 575.00 m Slope of d/s batter = 2H:3V;RL of Tail water level = 506.00 m The horizontal distance between u/s face and center line of drain holes is 8 m. Consider reservoir full condition and neglect earthquake, silt pressure and wave pressure effects. Assume any other data not given. [16]2. Write short notes on (a) Rock toe (b) Horizontal drainage blanket (c) Cut-off trench [4+4+4+4](d) Rip-rap. 3. Design a cross-regulator and the head regulator for a distributory from the following data. Discharge of parent channel = 110 cumecs Discharge of distributory = 15 cumecs F.S.L. of parent channel U/S / D/S = 200.00/199.80Bed width of parent channel U/S / D/S = 45 m/40 m. [16]

- 4. Write short notes on the following:
 - (a) Dropping shutters
 - (b) Stop logs Also draw the relevant sketches

[8+8]

1

www.firstranker.com

$\mathbf{R05}$

Set No. 2

- 5. (a) State the fundamental difference between Khosla's theory and Bligh's creep theory for seepage flow below a weir.
 - (b) Explain the design of a weir on permeable foundations for surface flow conditions. [8+8]
- 6. Design an open flume outlet with a discharge of 0.07 cumecs on a distributary channel with a full supply depth of 1.0 m. The available working head is 0.20 m.

[16]

7. A canal syphon has the following data

Code No: R05320104

(a) Canal Particulars	Full supply discharge	= 110.00 cumees
	Full supply level	= 203.00
	Bed level	= 200 m
	Bed width	= 25.0 m
(b) Drainage Particulars	High flood discharge =	= 100 cumecs
	Bed level	202.00
Hi	igh flood level \sim = 2	204.00
Assume other suitable	data. Design draunage an	d cannel waterway, levels and
roof barrel for the stru	cture.	[16]

- 8. Explain the mass curve method that can be used for determining:
 - (a) Reservoir capacity for fulfilling given demand?
 - (b) Demand rate from a reservoir of a given capacity [8+8]

R05

Set No. 4

III B.Tech II Semester Examinations,December 2010 WATER RESOURCES ENGINEERING-II Civil Engineering

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks * * * * *

1. A canal syphon has the following data

(a) Canal Particulars	Full supply discharge	= 110.00 cumecs
	Full supply level	= 203.00
	Bed level	= 200 m
	Bed width	= 25.0 m
(b) Drainage Particulars	High flood discharge =	= 100 cumecs
	Bed level	= 202.00
Η	igh flood level $= 2$	204.00
Assume other suitable	data. Design draunage an	d cannel waterway, levels and
roof barrel for the stru	icture.	[16]

2. Write short notes on the following:

- (a) Dropping shutters
- (b) Stop logs Also draw the relevant sketches
- 3. Write short notes on
 - (a) Rock toe

Code No: R05320104

Time: 3 hours

- (b) Horizontal drainage blanket
- (c) Cut-off trench
- (d) Rip-rap. [4+4+4+4]
- 4. (a) State the fundamental difference between Khosla's theory and Bligh's creep theory for seepage flow below a weir.
 - (b) Explain the design of a weir on permeable foundations for surface flow conditions. [8+8]
- 5. Design an open flume outlet with a discharge of 0.07 cumecs on a distributary channel with a full supply depth of 1.0 m. The available working head is 0.20 m.

[16]

[8+8]

- 6. Explain the mass curve method that can be used for determining:
 - (a) Reservoir capacity for fulfilling given demand?
 - (b) Demand rate from a reservoir of a given capacity [8+8]

www.firstranker.com

Code No: R05320104

$$\mathbf{R05}$$

Set No. 4

7. The following are the details of the section of a gravity dam. Calculate

i)Maximum vertical stress at the heel and toe of the dam. ii)Major principal stress at the toe of the dam. iii) Intensity of shear stress on a horizontal plane near the toe. RL of top of dam = 584.00 m Top width = 6 m; u/s face is vertical; RL of water level on u/s = 580.00 m. The batter on the d/s face starts from RL of 575.00 m; Slope of d/s batter = 2H:3V; RL of Tail water level = 506.00 m The horizontal distance between u/s face and center line of drain holes is 8 m. Consider reservoir full condition and neglect earthquake, silt pressure and wave pressure effects. Assume any other data not given. [16]

8. Design a cross-regulator and the head regulator for a distributory from the following data.

Discharge of parent channel = 110 cumees

Discharge of distributory = 15 cumecs

F.S.L. of parent channel U/S / D/S = 200.00/199.80Bed width of parent channel U/S / D/S = 45 m/40 m.

[16]

R05

Set No. 1

III B.Tech II Semester Examinations, December 2010 WATER RESOURCES ENGINEERING-II **Civil Engineering**

Time: 3 hours

Code No: R05320104

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) State the fundamental difference between Khosla's theory and Bligh's creep theory for seepage flow below a weir.
 - (b) Explain the design of a weir on permeable foundations for surface flow conditions. [8+8]
- 2. Design a cross-regulator and the head regulator for a distributory from the following data.

Discharge of parent channel = 110 cumecs

Discharge of distributory = 15 cumecs

F.S.L. of parent channel U/S / D/S = 200.00/199.80

Bed width of parent channel U/S / D/S = 45 m/40 m.

- 3. Explain the mass curve method that can be used for determining:
 - (a) Reservoir capacity for fulfilling given demand?
 - (b) Demand rate from a reservoir of a given capacity [8+8]
- 4. Design an open flume outlet with a discharge of 0.07 cumecs on a distributary channel with a full supply depth of 1.0 m. The available working head is 0.20 m.

[16]

[16]

5. The following are the details of the section of a gravity dam. Calculate

i)Maximum vertical stress at the heel and toe of the dam.

ii)Major principal stress at the toe of the dam.

iii) Intensity of shear stress on a horizontal plane near the toe.

RL of top of dam = 584.00 m Top width = 6 m;

u/s face is vertical;

RL of water level on u/s = 580.00 m.

The batter on the d/s face starts from RL of 575.00 m;

Slope of d/s batter = 2H:3V;

RL of Tail water level = 506.00 m

The horizontal distance between u/s face and center line of drain holes is 8 m. Consider reservoir full condition and neglect earthquake, silt pressure and wave pressure effects.

Assume any other data not given.

[16]

Code No: R05320104	R05	Set	No. 1
6. Write short notes on the foll	owing:		
(a) Dropping shutters			
(b) Stop logs Also draw the relevant	sketches		[8+8]
7. Write short notes on			
(a) Rock toe			
(b) Horizontal drainage bla	nket		
(c) Cut-off trench			
(d) Rip-rap.			[4+4+4+4]
8. A canal syphon has the follo	owing data		
(a) Canal Particulars	Full supply dischar Full supply level Bed level Bed width	$\begin{array}{rge} = 110.00 \ \mathrm{cur} \\ = 203.00 \\ = 200 \ \mathrm{m} \\ = 25.0 \ \mathrm{m} \end{array}$	necs
(b) Drainage Particulars	High flood discharge Bed level gh flood level	e = 100 cumecs = 202.00 = 204.00	
Assume other suitable of roof barrel for the struct	lata. Design draunag cture.	e and cannel water	way, levels and [16]
	* * * * *		

 $\mathbf{R05}$

Set No. 3

III B.Tech II Semester Examinations,December 2010 WATER RESOURCES ENGINEERING-II Civil Engineering

Max Marks: 80

[16]

[4+4+4+4]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Design an open flume outlet with a discharge of 0.07 cumecs on a distributary channel with a full supply depth of 1.0 m. The available working head is 0.20 m.
- 2. Write short notes on
 - (a) Rock toe

Code No: R05320104

Time: 3 hours

- (b) Horizontal drainage blanket
- (c) Cut-off trench
- (d) Rip-rap.
- 3. Design a cross-regulator and the head regulator for a distributory from the following data.

Discharge of parent channel = 110 cumecs

Discharge of distributory = 15 cumees

F.S.L. of parent channel U/S / D/S = 200.00/199.80

Bed width of parent channel U/S / D/S = 45 m/40 m. [16]

- 4. (a) State the fundamental difference between Khosla's theory and Bligh's creep theory for seepage flow below a weir.
 - (b) Explain the design of a weir on permeable foundations for surface flow conditions. [8+8]
- 5. The following are the details of the section of a gravity dam. Calculate

i)Maximum vertical stress at the heel and toe of the dam.
ii)Major principal stress at the toe of the dam.
iii) Intensity of shear stress on a horizontal plane near the toe.
RL of top of dam = 584.00 m
Top width = 6 m;
u/s face is vertical;
RL of water level on u/s = 580.00 m.
The batter on the d/s face starts from RL of 575.00 m;
Slope of d/s batter = 2H:3V;
RL of Tail water level = 506.00 m
The horizontal distance between u/s face and center line of drain holes is 8 m.
Consider reservoir full condition and neglect earthquake, silt pressure and wave

Code No: R05320104	R05	Set No.	3
pressure effects. Assume any other data not	given.		[16]
6. Explain the mass curve met	hod that can be used fo	r determining:	
(a) Reservoir capacity for(b) Demand rate from a result	fulfilling given demand? eservoir of a given capaci	ity	[8+8]
7. A canal syphon has the follo	owing data		
(a) Canal Particulars	Full supply discharge Full supply level Bed level Bed width	$= 110.00 \text{ cumecs} \\ = 203.00 \\ = 200 \text{ m} \\ = 25.0 \text{ m}$	
 (b) Drainage Particulars Hi Assume other suitable roof barrel for the strue 	High flood discharge Bed level gh flood level data. Design draunage a cture.	= 100 cumecs = 202.00 204.00 nd cannel waterway, level	s and [16]
 Write short notes on the fol (a) Dropping shutters 	lowing;	r	
(a) Dropping shutters(b) Stop logsAlso draw the relevant	sketches ****		[8+8]