$\mathbf{R05}$

Set No. 2

III B.Tech II Semester Examinations,December 2010 DIGITAL SIGNAL PROCESSING Common to ICE, ETM, E.CONT.E, EIE, ECE, EEE

Time: 3 hours

Code No: R05320201

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Obtain the poly phase decomposition of the IIR system with transfer function $H(z)=(1-3Z^{-1})/(1+4Z^{-1}).$ [16]
- 2. (a) Let $X(e^{jw})$ denote the DTFT of a real sequence. If $Y(e^{jw}) = \frac{1}{2} \left[X(e^{jw}) + X(-e^{jw}) \right]$, determine the inverse DTFT of $Y(e^{jw})$.
 - (b) State and prove time scaling and time reversal properties of DTFT. [8+8]
- 3. (a) Determine the stability of region for the causal system $H(z) = \frac{1}{1+a_1z^{-1}+a_2z^{-2}}$ by computing its poles and restricting them to be inside the unit circle.
 - (b) Determine the zero response of the system: $y(n) = \frac{1}{2} y(n-1) + 4x(n) + 3x(n-1)$ to the input $x(n) = e^{iw_0n} u(n)$. [8+8]
- 4. Consider the finite length sequence $x(n) = \delta(n) + 2\delta(n-5)$
 - (a) Find the 10-point DFT of x(n)
 - (b) Find the sequence that has a DFT $Y(k) = e^{j2k \cdot \frac{2\pi}{10}} X(k)$ where X(k) is the 10-point DFT of x(n)
 - (c) Find the 10-point sequence y(n) that has a DFT Y(K)=X(K)W(K) where X(K) is the 10-point DFT of the sequence w(n) = 1, $0 \le n \le 6$ = 0, otherwise . [4+6+6]
- 5. Develop a radix -2 DIF / FFT algorithm for evaluating the DFT for N=8 and hence determine the 8-point DFT of the sequence $x(n) = \{0, 1, 0, 1, 0, 1, 0, 1\}$. [16]
- 6. (a) What are the advantages of DSP processors over conventional microprocessors?
 - (b) Explain the Implementation of convolver with single multiplier/adder. [8+8]
- 7. (a) Describe digital IIR filter characterization in Z domain.
 - (b) Find H(Z) using Impulse Invariant method for given analog system. $H(s) = 1/(s + 0.5) (s^{2} + 0.5s + 2)$ [6+10]
- 8. Design a band pass filter with frequency response

$\mathbf{R05}$

Set No. 2

 $H_d(e^{j\omega}) = e^{-j2\omega n_o}$ $\leq \omega_{c2}$ $\omega_{c1} \leq |\omega|$ = 0otherwise Design a filter for N = 7 and cut off frequency $\omega_{c1} = \pi/4$ and $\omega_{c2} = \pi/2$ Using

(a) Hanning window.

Code No: R05320201

(b) Hamming window.

[16]

FRANKER

R05 Set No. 4 Code No: R05320201 III B.Tech II Semester Examinations, December 2010 DIGITAL SIGNAL PROCESSING Common to ICE, ETM, E.CONT.E, EIE, ECE, EEE Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks ***** 1. Obtain the poly phase decomposition of the IIR system with transfer function $H(z) = (1-3Z^{-1})/(1+4Z^{-1}).$ [16]2. (a) Determine the stability of region for the causal system H(z) = $1 + a_2 z^{-2}$ by computing its poles and restricting them to be inside the unit circle. (b) Determine the zero - response of the system: y(n) = 1/2 y(n - 1) + 4x(n) + 4x(n)3x(n - 1) to the input $x(n) = e^{jw_0 n} . u(n)$. [8+8](a) Describe digital IIR filter characterization in Z domain. 3. (b) Find H(Z) using Impulse Invariant method for given analog system. $H(s) = 1/(s + 0.5) (s^2 + 0.5s + 2)$ |6+10|4. Consider the finite length sequence $\mathbf{x}(\mathbf{n}) = \delta(\mathbf{n}) + 2\delta(\mathbf{n}-5)$ (a) Find the 10-point DFT of x(n)(b) Find the sequence that has a DFT $Y(k) = e^{j2k \cdot \frac{2\pi}{10}}, X(k)$ where X(k) is the 10-point DFT of x(n)(c) Find the 10-point sequence y(n) that has a DFT Y(K)=X(K)W(K) where X(K) is the 10-point DFT of the sequence $w(n) = 1 , \quad 0 \le n \le 6$ [4+6+6]= 0, otherwise 5. (a) Let $X(e^{jw})$ denote the DTFT of a real sequence. If $Y(e^{jw}) = \frac{1}{2} \left[X\left(e^{\frac{jw}{2}}\right) + X\left(-e^{\frac{jw}{2}}\right) \right]$, determine the inverse DTFT of $Y(e^{jw})$. (b) State and prove time scaling and time reversal properties of DTFT. [8+8]6. Design a band pass filter with frequency response $H_d(e^{j\omega}) = e^{-j2\omega n_o}$ $\omega_{c1} \leq |\omega| \leq \omega_{c2}$ otherwise

Design a filter for N = 7 and cut off frequency $\omega_{c1} = \pi/4$ and $\omega_{c2} = \pi/2$ Using

- (a) Hanning window.
- (b) Hamming window.

[16]

www.firstranker.com

Code No: R05320201

$\mathbf{R05}$

Set No. 4

- 7. (a) What are the advantages of DSP processors over conventional microprocessors?
 - (b) Explain the Implementation of convolver with single multiplier/adder. [8+8]
- 8. Develop a radix -2 DIF / FFT algorithm for evaluating the DFT for N=8 and hence determine the 8-point DFT of the sequence $x(n) = \{0, 1, 0, 1, 0, 1, 0, 1\}$. [16]

RANK

 $\mathbf{R05}$

Set No. 1

Max Marks: 80

[16]

III B.Tech II Semester Examinations,December 2010 DIGITAL SIGNAL PROCESSING Common to ICE, ETM, E.CONT.E, EIE, ECE, EEE

Time: 3 hours

Code No: R05320201

Answer any FIVE Questions

All Questions carry equal marks

1. Design a band pass filter with frequency response

 $\begin{array}{ll} H_d(e^{j\omega}) = e^{-j2\omega n_o} & \omega_{c1} \leq |\omega| \leq \omega_{c2} \\ = 0 & \text{otherwise} \\ \text{Design a filter for N = 7 and cut off frequency } \omega_{c1} = \pi/4 & \text{and } \omega_{c2} = \pi/2 \\ \text{Using} \end{array}$

- (a) Hanning window.
- (b) Hamming window.
- 2. (a) Let $X(e^{jw})$ denote the DTFT of a real sequence. If $Y(e^{jw}) = \frac{1}{2} \left[X\left(e^{\frac{jw}{2}}\right) + X\left(-e^{\frac{jw}{2}}\right) \right]$, determine the inverse DTFT of $Y(e^{jw})$.
 - (b) State and prove time scaling and time reversal properties of DTFT. [8+8]
- 3. Develop a radix -2 DIF / FFT algorithm for evaluating the DFT for N=8 and hence determine the 8-point DFT of the sequence $x(n) = \{0, 1, 0, 1, 0, 1, 0, 1\}$. [16]
- 4. (a) Describe digital IIR filter characterization in Z domain.
 - (b) Find H(Z) using Impulse Invariant method for given analog system. $H(s) \neq 1/(s + 0.5) (s^2 + 0.5s + 2)$ [6+10]
- 5. (a) Determine the stability of region for the causal system $H(z) = \frac{1}{1+a_1z^{-1}+a_2z^{-2}}$ by computing its poles and restricting them to be inside the unit circle.
 - (b) Determine the zero response of the system: $y(n) = \frac{1}{2} y(n-1) + 4x(n) + 3x(n-1)$ to the input $x(n) = e^{jw_0n} . u(n)$. [8+8]
- 6. (a) What are the advantages of DSP processors over conventional microprocessors?
 - (b) Explain the Implementation of convolver with single multiplier/adder. [8+8]
- 7. Obtain the poly phase decomposition of the IIR system with transfer function $H(z)=(1-3Z^{-1})/(1+4Z^{-1}).$ [16]
- 8. Consider the finite length sequence $x(n) = \delta(n) + 2\delta(n-5)$
 - (a) Find the 10-point DFT of x(n)

$\mathbf{R05}$

Set No. 1

(b) Find the sequence that has a DFT $Y(k) = e^{j2k \cdot \frac{2\pi}{10}} \cdot X(k)$ where X(k) is the 10-point DFT of x(n)

Code No: R05320201

(c) Find the 10-point sequence y(n) that has a DFT Y(K)=X(K)W(K) where X(K) is the 10-point DFT of the sequence $w(n) = 1 , \quad 0 \le n \le 6$ [4+6+6]= 0, otherwise

FRANKER

 $\mathbf{R05}$

Set No. 3

III B.Tech II Semester Examinations,December 2010 DIGITAL SIGNAL PROCESSING Common to ICE, ETM, E.CONT.E, EIE, ECE, EEE

Time: 3 hours

Code No: R05320201

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks *****

1. Design a band pass filter with frequency response

 $\begin{array}{ll} H_{d}(e^{j\omega}) = e^{-j2\omega n_{o}} & \omega_{c1} \leq |\omega| \leq \omega_{c2} \\ = 0 & \text{otherwise} \\ \text{Design a filter for N = 7 and cut off frequency } \omega_{c1} = \pi/4 & \text{and } \omega_{c2} = \pi/2 \\ \text{Using} \end{array}$

- (a) Hanning window.
- (b) Hamming window.
- 2. (a) Describe digital IIR filter characterization in Z domain.
 - (b) Find H(Z) using Impulse Invariant method for given analog system. $H(s) = 1/(s + 0.5) (s^2 + 0.5s + 2)$ [6+10]
- 3. (a) What are the advantages of DSP processors over conventional microprocessors?
 - (b) Explain the Implementation of convolver with single multiplier/adder. $[8\!+\!8]$
- 4. (a) Let $X(e^{jw})$ denote the DTFT of a real sequence. If $Y(e^{jw}) = \frac{1}{2} \left[X\left(e^{\frac{jw}{2}}\right) + X\left(-e^{\frac{jw}{2}}\right) \right]$, determine the inverse DTFT of $Y(e^{jw})$.
 - (b) State and prove time scaling and time reversal properties of DTFT. [8+8]
- 5. (a) Determine the stability of region for the causal system $H(z) = \frac{1}{1+a_1z^{-1}+a_2z^{-2}}$ by computing its poles and restricting them to be inside the unit circle.
 - (b) Determine the zero response of the system: $y(n) = \frac{1}{2} y(n-1) + 4x(n) + 3x(n-1)$ to the input $x(n) = e^{jw_0n} . u(n)$. [8+8]
- 6. Develop a radix -2 DIF / FFT algorithm for evaluating the DFT for N=8 and hence determine the 8-point DFT of the sequence $x(n) = \{0, 1, 0, 1, 0, 1, 0, 1\}$. [16]
- 7. Consider the finite length sequence $x(n) = \delta(n) + 2\delta(n-5)$
 - (a) Find the 10-point DFT of x(n)
 - (b) Find the sequence that has a DFT $Y(k) = e^{j2k \cdot \frac{2\pi}{10}} \cdot X(k)$ where X(k) is the 10-point DFT of x(n)

www.firstranker.com

Code No: R05320201

 $\mathbf{R05}$

Set No. 3

(c) Find the 10-point sequence y(n) that has a DFT Y(K)=X(K)W(K) where X(K) is the 10-point DFT of the sequence

$$w(n) = 1$$
, $0 \le n \le 6$
= 0, otherwise [4+6+6]

8. Obtain the poly phase decomposition of the IIR system with transfer function $H(z) = (1-3Z^{-1})/(1+4Z^{-1}).$ [16]

FRANKER