III B.Tech II Semester Examinations,December 2010 COMPILER DESIGN
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Describe, in detail, about the concept of DAG for register allocation with an appropriate example.
2. (a) What are the common conflicts that can be encountered in shift - reduce parser.
(b) Construct SLR parsing table for the following grammar.

$$
\begin{equation*}
\left.R \rightarrow R^{\prime}\right|^{\prime} R|R R| R^{*}|(R)| a \mid b \tag{8+8}
\end{equation*}
$$

3. Construct $\mathrm{LL}(1)$ parse table for the following grammar.
$b \exp r \rightarrow b \exp r$ or bterm | bterm
bterm \rightarrow bterm and bfactor | bfactor
b factor \rightarrow not bfactor $\mid(b$ expr $) \mid$ true |fatse
where or, and, not, (,), true, false are terminals in the grammar.
4. (a) Consider the fotlowing fragment of ' C ' code:
float i, j;
$\mathrm{i}=\mathrm{i} * 70+\mathrm{j}+2 ;$
Write the output at all phases of the compiler for the above 'C' code.
(b) Write short notes on: input buffering.
5. (a) Draw syntax tree for the arithmetic expressions $a *(b+c)-d / 2$
Also write the given expression in postfix notation.
(b) Write the quadruple, triple, indirect triple for the following expression $(x+y)^{*}(y+z)+(x+y+z)$
6. (a) Explain how copy propagation can be done using data flow equation.
(b) What are du and ud chains.
7. What are the various operations performed on the symbol table? Explain each of them in detail.
8. (a) Write an algorithm for partitioning a sequence of three-address statements into basic blocks.
(b) Apply the algorithm for the following three-address code :
i. $\mathrm{t} 1:=4^{*} \mathrm{i}$
ii. $\mathrm{t} 2:=\mathrm{a}[\mathrm{t} 1]$

Code No: R05320502
R05
iii. $\mathrm{t} 3:=4^{*} \mathrm{I}$
iv. $\mathrm{t} 4:=\mathrm{b}[\mathrm{t} 3]$
v. $\mathrm{t} 5:=\mathrm{t} 2^{*} \mathrm{t} 4$
vi. $\mathrm{t} 6:=\operatorname{prod}+\mathrm{t} 5$
vii. prod: $=\mathrm{t} 6$
viii. $\mathrm{t7}:=\mathrm{i}+1$
ix. $\mathrm{i}:=\mathrm{t} 7$
x. if $\mathrm{i}<=20$ goto (1).

III B.Tech II Semester Examinations,December 2010 COMPILER DESIGN
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Describe, in detail, about the concept of DAG for register allocation with an appropriate example.
2. What are the various operations performed on the symbol table? Explain each of them in detail.
3. (a) Consider the following fragment of ' C ' code:
float i, j;
$\mathrm{i}=\mathrm{i} * 70+\mathrm{j}+2$;
Write the output at all phases of the compiler for the above ' C ' code.
(b) Write short notes on: input buffering.
4. (a) Write an algorithm for partitioning a sequence of three-address statements into basic blocks.
(b) Apply the algorithm for the following three-address code:
i. $\mathrm{t} 1:=4 * \mathrm{i}$
ii, $\mathrm{t}:=\mathrm{a}[\mathrm{t} 1]$
iii. t3: $=4$ I
iv. $\mathrm{t} 4:=\mathrm{b}[\mathrm{t} 3]$
v. $\mathrm{t} 5:=\mathrm{t} 2^{*} \mathrm{t} 4$
vi. $\mathrm{t} 6:=\operatorname{prod}+\mathrm{t} 5$
vii. prod:=t6
viii. $\mathrm{t} 7:=\mathrm{i}+1$
ix. $\mathrm{i}:=\mathrm{t} 7$
x. if $\mathrm{i}<=20$ goto (1).
5. (a) What are the common conflicts that can be encountered in shift - reduce parser.
(b) Construct SLR parsing table for the following grammar. $\left.R \rightarrow R^{\prime}\right|^{\prime} R|R R| R^{*}|(R)| a \mid b$
6. Construct $\mathrm{LL}(1)$ parse table for the following grammar.
$b \exp r \rightarrow b \exp r$ or bterm | bterm
bterm \rightarrow bterm and bfactor \mid bfactor
b factor \rightarrow not bfactor $|(b \exp r)|$ true \mid false
where or, and, not, (,), true, false are terminals in the grammar.
7. (a) Explain how copy propagation can be done using data flow equation.
(b) What are du and ud chains.
8. (a) Draw syntax tree for the arithmetic expressions
$a *(b+c)-d / 2$
Also write the given expression in postfix notation.
(b) Write the quadruple, triple, indirect triple for the following expression $(x+y)^{*}(y+z)+(x+y+z)$

III B.Tech II Semester Examinations,December 2010 COMPILER DESIGN
 Computer Science And Engineering

Max Marks: 80
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) What are the common conflicts that can be encountered in shift - reduce parser.
(b) Construct SLR parsing table for the following grammar.
$\left.R \rightarrow R^{\prime}\right|^{\prime} R|R R| R^{*}|(R)| a \mid b$

$$
[8+8]
$$

2. What are the various operations performed on the symbol table? Explain each of them in detail.
3. (a) Consider the following fragment of ' C ' code:
float i, j;
$\mathrm{i}=\mathrm{i} * 70+\mathrm{j}+2$;
Write the output at all phases of the compiler for the above ' C ' code.
(b) Write short notes on: input buffering.
$[10+6]$
4. (a) Draw syntax tree for the arithmetic expressions
$a *(b+c)-d \not / 2$
Also write the givenexpression in postfix notation.
(b) Write the quadruple, triple, indirect triple for the following expression
$(x+y) *(y+z)+(x+y+z)$
5. (a) Write an algorithm for partitioning a sequence of three-address statements into basic blocks.
(b) Apply the algorithm for the following three-address code :
i. $\mathrm{t} 1:=4^{*} \mathrm{i}$
ii. $\mathrm{t} 2:=\mathrm{a}[\mathrm{t} 1]$
iii. $\mathrm{t} 3:=4^{*} \mathrm{I}$
iv. $\mathrm{t} 4:=\mathrm{b}[\mathrm{t} 3]$
v. $\mathrm{t} 5:=\mathrm{t} 2^{*} \mathrm{t} 4$
vi. $\mathrm{t} 6:=\operatorname{prod}+\mathrm{t} 5$
vii. prod: $=\mathrm{t} 6$
viii. $\mathrm{t} 7:=\mathrm{i}+1$
ix. i:= t7
x. if $i<=20$ goto (1).
6. Describe, in detail, about the concept of DAG for register allocation with an appropriate example.
7. (a) Explain how copy propagation can be done using data flow equation.
(b) What are du and ud chains.
8. Construct LL(1) parse table for the following grammar.
$b \exp r \rightarrow b \exp r$ or bterm | bterm
bterm \rightarrow bterm and bfactor | bfactor
b factor \rightarrow not bfactor $|(b \exp r)|$ true \mid false
where or, and, not, (,), true, false are terminals in the grammar.

III B.Tech II Semester Examinations,December 2010 COMPILER DESIGN
 Computer Science And Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Consider the following fragment of ' C ' code:
float i, j;
$\mathrm{i}=\mathrm{i} * 70+\mathrm{j}+2$;
Write the output at all phases of the compiler for the above ' C ' code.
(b) Write short notes on: input buffering.
$[10+6]$
2. Describe, in detail, about the concept of DAG for register allocation with an appropriate example.
3. (a) Explain how copy propagation can be done using data flow equation.
(b) What are du and ud chains
4. (a) Write an algorithm for partitioning a sequence of three-address statements into basic blocks.
(b) Apply the algorithm for the following three-address code:
i. $\mathrm{t} 1:=4 * \mathrm{i}$
ii. $\mathrm{t} 2:=\mathrm{a}[\mathrm{t} 1]$
iii. $\mathrm{t} 3:=4^{*} \mathrm{I}$
iv. $\mathrm{t} 4:=\mathrm{b}[\mathrm{t} 3]$
v. $\mathrm{t} 5:=\mathrm{t} 2^{*} \mathrm{t} 4$
vi. $\mathrm{t} 6:=\operatorname{prod}+\mathrm{t} 5$
vii. prod: $=\mathrm{t} 6$
viii. t : $=\mathrm{i}+1$
ix. $\mathrm{i}:=\mathrm{t} 7$
x. if $\mathrm{i}<=20$ goto (1).
5. (a) Draw syntax tree for the arithmetic expressions
$a *(b+c)-d / 2$
Also write the given expression in postfix notation.
(b) Write the quadruple, triple, indirect triple for the following expression
$(x+y)^{*}(y+z)+(x+y+z)$

$$
[8+8]
$$

6. What are the various operations performed on the symbol table? Explain each of them in detail.
7. Construct $\mathrm{LL}(1)$ parse table for the following grammar.
$b \exp r \rightarrow b \exp r$ or bterm | bterm
bterm \rightarrow bterm and bfactor \mid bfactor
b factor \rightarrow not bfactor $|(b \exp r)|$ true \mid false
where or, and, not, (,), true, false are terminals in the grammar.
8. (a) What are the common conflicts that can be encountered in shift - reduce parser.
(b) Construct SLR parsing table for the following grammar.

$$
\left.R \rightarrow R^{\prime}\right|^{\prime} R|R R| R^{*}|(R)| a \mid b
$$

$$
[8+8]
$$

