IV B.Tech I Semester Examinations,November 2010 ADVANCED FOUNDATION ENGINEERING Civil Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Explain the design of foundation when a dense stratum overlie a loose one.
(b) A footing $2 \mathrm{~m} \times 2 \mathrm{~m}$ has to carry an axial load of 600 kN with $\mathrm{M}_{x}=180 \mathrm{kN} . \mathrm{m}$ and $\mathrm{M}_{y}=60 \mathrm{kN} . \mathrm{m}$. The soil has $\mathrm{c}=15 \mathrm{kN} / \mathrm{m}^{2}, \phi=25^{0}$ and $\gamma=20 \mathrm{kN} / \mathrm{m}^{3}$. The depth of foundation is 1.5 m . Find the safety of the footing, if the ground water level can be assumed to rise up to the foundation level. $\quad[6+10]$
2. (a) How do you estimate the settlement of a footing on clay using Janhu's method?
(b) A rectangular footing $2 \mathrm{~m} \times 3 \mathrm{~m}$ carries a column load of 600 kN at a depth of 1 m . The footing rests on $\mathrm{c}-\phi$ soil strata of 6 m thick having Poisson's ratio of 0.25 and modulus of elasticity as $20000 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the immediate elastic settlement of the footing. Influence factor $=1.06 . \quad[8+8]$
3. (a) What are the various problems associated with expansive soils in Civil Engineering.
(b) When are the uses of under-reamed piles? Analyse a typical under-reamed pile and give the various design implications.
4. The pressure surface of retaining wall slopes up and away from the backfill with a batter of 1 in 10. The backfill is a non-cohesive soil with a density of $19.2 \mathrm{kN} / \mathrm{m}^{3}$ and angle of internal friction 35°. The angle of surcharge is 4^{0}, the angle of wall friction is estimated to be 20°, and the vertical height of the wall is 12 m . Compute the maximum active thrust on the wall.
5. (a) Explain the Reese and Matlock's approach for laterally loaded piles analysis.
(b) A 200 mm diameter, 5 m long piles are used as foundations for a column carrying 500 kN in a uniform deposit of normally consolidated clay having $\gamma_{\text {sat }}=19 \mathrm{kN} / \mathrm{m}^{3}$, liquid limit 40%, void ratio 1.05 . There are nine piles in the group arranged in a square pattern with centre to centre spacing 500 mm . Hard stratum exists at a depth of 7 m . Estimate the settlement of a pile group.

$$
[8+8]
$$

6. A circular well of 5 m external diameter and steining thickness 1 m is used as foundation for a bridge pier in a sandy stratum. The submerged unit weight of sand is $10 \mathrm{KN} / \mathrm{m}^{3}$ and angle of shearing resistance, ϕ is 30°. The well is subjected to a horizontal force of 50 tones and a total moment of $500 \mathrm{t}-\mathrm{m}$ at the scour level. The depth of well below scour level is 12 m . Assuming the well to be a heavy well, calculate the total horizontal equivalent resisting force the well can resist: Further, what will be the change in value, if the maximum scour level is subjected to a surcharge equivalent to 2 m height of soil.
7. (a) Classify the piles based on the material and use.
(b) A group of 9 piles, 12 m long and 250 mm in diameter is to be arranged in a square pattern in clayey soil with an average unconfined compressive strength of $60 \mathrm{kN} / \mathrm{m}^{2}$. Work out the spacing of piles for a group efficiency factor 1.0. Neglect the bearing at the tip of the piles.
8. The height of a cantilever sheet pile from the top of the dredge level is 9 m . The water level in the backfill is at 2 m from top. Find the depth of penetration required for a factor of safety equal to 1 . Assume that above the water table, the soil is dry. The other properties of soil are: $\gamma_{s a t}=20 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{~K}_{A}=0.33, \mathrm{~K}_{p}=3.0, \mathrm{G}_{s}=2.6$.

IV B.Tech I Semester Examinations,November 2010 ADVANCED FOUNDATION ENGINEERING Civil Engineering

Time: 3 hours

Answer any FIVE Questions
 All Questions carry equal marks

1. The height of a cantilever sheet pile from the top of the dredge level is 9 m . The water level in the backfill is at 2 m from top. Find the depth of penetration required for a factor of safety equal to 1 . Assume that above the water table, the soil is dry. The other properties of soil are: $\gamma_{s a t}=20 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{~K}_{A}=0.33, \mathrm{~K}_{p}=3.0, \mathrm{G}_{s}=2.6$.
2. (a) Classify the piles based on the material and use
(b) A group of 9 piles, 12 m long and 250 mm in diameter is to be arranged in a square pattern in clayey soil with an average unconfined compressive strength of $60 \mathrm{kN} / \mathrm{m}^{2}$. Work out the spacing of piles for a group efficiency factor 1.0. Neglect the bearing at the tip of the piles. $[8+8]$
3. (a) How do you estimate the settlement of footing on clay using Janbu's method?
(b) A rectangular footing $2 \mathrm{~m} \times 3 \mathrm{~m}$ carries a column load of 600 kN at a depth of 1 m . The footing rests on $\mathrm{c}-\phi$ soil strata of 6 m thick having Poisson's ratio of 0.25 and modulus of elasticity as $20000 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the immediate elastic settlement of the footing. Influence factor $=1.06 . \quad[8+8]$
4. (a) Explain the design of foundation when a dense stratum overlie a loose one.
(b) A footing $2 \mathrm{~m} \times 2 \mathrm{~m}$ has to carry an axial load of 600 kN with $\mathrm{M}_{x}=180 \mathrm{kN} . \mathrm{m}$ and $\mathbf{M}_{y}=60 \mathrm{kN} . \mathrm{m}$. The soil has $\mathrm{c}=15 \mathrm{kN} / \mathrm{m}^{2}, \phi=25^{0}$ and $\gamma=20 \mathrm{kN} / \mathrm{m}^{3}$. The depth of foundation is 1.5 m . Find the safety of the footing, if the ground water level can be assumed to rise up to the foundation level. $\quad[6+10]$
5. (a) Explain the Reese and Matlock's approach for laterally loaded piles analysis.
(b) A 200 mm diameter, 5 m long piles are used as foundations for a column carrying 500 kN in a uniform deposit of normally consolidated clay having $\gamma_{s a t}=19 \mathrm{kN} / \mathrm{m}^{3}$, liquid limit 40%, void ratio 1.05 . There are nine piles in the group arranged in a square pattern with centre to centre spacing 500 mm . Hard stratum exists at a depth of 7 m . Estimate the settlement of a pile group.
[8+8]
6. A circular well of 5 m external diameter and steining thickness 1 m is used as foundation for a bridge pier in a sandy stratum. The submerged unit weight of sand is $10 \mathrm{KN} / \mathrm{m}^{3}$ and angle of shearing resistance, ϕ is 30°. The well is subjected to a horizontal force of 50 tones and a total moment of $500 \mathrm{t}-\mathrm{m}$ at the scour level. The depth of well below scour level is 12 m . Assuming the well to be a heavy well, calculate the total horizontal equivalent resisting force the well can resist: Further,
what will be the change in value, if the maximum scour level is subjected to a surcharge equivalent to 2 m height of soil.
7. (a) What are the various problems associated with expansive soils in Civil Engineering.
(b) When are the uses of under-reamed piles? Analyse a typical under-reamed pile and give the various design implications.
8. The pressure surface of a retaining wall slopes up and away from the backfill with a batter of 1 in 10 . The backfill is a non-cohesive soil with a density of $19.2 \mathrm{kN} / \mathrm{m}^{3}$ and angle of internal friction 35°. The angle of surcharge is 4^{0}, the angle of wall friction is estimated to be 20°, and the vertical height of the wall is 12 m . Compute the maximum active thrust on the wall.

IV B.Tech I Semester Examinations,November 2010 ADVANCED FOUNDATION ENGINEERING Civil Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. A circular well of 5 m external diameter and steining thickness 1 m is used as foundation for a bridge pier in a sandy stratum. The submerged unit weight of sand is $10 \mathrm{KN} / \mathrm{m}^{3}$ and angle of shearing resistance, ϕ is 30°. The well is subjected to a horizontal force of 50 tones and a total moment of $500 \mathrm{t}-\mathrm{m}$ at the scour level. The depth of well below scour level is 12 m . Assuming the well to be a heavy well, calculate the total horizontal equivalent resisting force the well can resist: Further, what will be the change in value, if the maximum scour level is subjected to a surcharge equivalent to 2 m height of soil.
2. (a) Explain the design of foundation when a dense stratum overlie a loose one.
(b) A footing $2 \mathrm{~m} \times 2 \mathrm{~m}$ has to carry anial load of 600 kN with $\mathrm{M}_{x}=180 \mathrm{kN} . \mathrm{m}$ and $\mathrm{M}_{y}=60 \mathrm{kN} . \mathrm{m}$. The soithas $\mathrm{c}=15 \mathrm{kN} / \mathrm{m}^{2}, \phi=25^{0}$ and $\gamma=20 \mathrm{kN} / \mathrm{m}^{3}$. The depth of foundation is 1.5 m . Find the safety of the footing, if the ground water level can be assumed to rise up to the foundation level. $\quad[6+10]$
3. The pressure surface of a retaining wall slopes up and away from the backfill with a batter of 1 in 10 . The backfill is a non-cohesive soil with a density of $19.2 \mathrm{kN} / \mathrm{m}^{3}$ and angle of internal frietion 35°. The angle of surcharge is 4^{0}, the angle of wall friction is estimated to be 20°, and the vertical height of the wall is 12 m . Compute the maximum active thrust on the wall.
4. (a) What are the various problems associated with expansive soils in Civil Engineering.
(b) When are the uses of under-reamed piles? Analyse a typical under-reamed pile and give the various design implications.
5. (a) How do you estimate the settlement of a footing on clay using Janbu's method?
(b) A rectangular footing $2 \mathrm{~m} \times 3 \mathrm{~m}$ carries a column load of 600 kN at a depth of 1 m . The footing rests on $\mathrm{c}-\phi$ soil strata of 6 m thick having Poisson's ratio of 0.25 and modulus of elasticity as $20000 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the immediate elastic settlement of the footing. Influence factor $=1.06 . \quad[8+8]$
6. The height of a cantilever sheet pile from the top of the dredge level is 9 m . The water level in the backfill is at 2 m from top. Find the depth of penetration required for a factor of safety equal to 1 . Assume that above the water table, the soil is dry. The other properties of soil are: $\gamma_{s a t}=20 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{~K}_{A}=0.33, \mathrm{~K}_{p}=3.0, \mathrm{G}_{s}=2.6$.
7. (a) Classify the piles based on the material and use.
(b) A group of 9 piles, 12 m long and 250 mm in diameter is to be arranged in a square pattern in clayey soil with an average unconfined compressive strength of $60 \mathrm{kN} / \mathrm{m}^{2}$. Work out the spacing of piles for a group efficiency factor 1.0. Neglect the bearing at the tip of the piles.
8. (a) Explain the Reese and Matlock's approach for laterally loaded piles analysis.
(b) A 200 mm diameter, 5 m long piles are used as foundations for a column carrying 500 kN in a uniform deposit of normally consolidated clay having $\gamma_{\text {sat }}=19 \mathrm{kN} / \mathrm{m}^{3}$, liquid limit 40%, void ratio 1.05 . There are nine piles in the group arranged in a square pattern with centre to centre spacing 500 mm . Hard stratum exists at a depth of 7 m . Estimate the settlementof a pile group.

IV B.Tech I Semester Examinations,November 2010 ADVANCED FOUNDATION ENGINEERING Civil Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. The height of a cantilever sheet pile from the top of the dredge level is 9 m . The water level in the backfill is at 2 m from top. Find the depth of penetration required for a factor of safety equal to 1 . Assume that above the water table, the soil is dry. The other properties of soil are: $\gamma_{s a t}=20 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{~K}_{A}=0.33, \mathrm{~K}_{p}=3.0, \mathrm{G}_{s}=2.6$.
2. (a) Explain the Reese and Matlock's approach for laterally loaded piles analysis.
(b) A 200 mm diameter, 5 m long piles are used as foundations for a column carrying 500 kN in a uniform deposit of normally consolidated clay having $\gamma_{s a t}=19 \mathrm{kN} / \mathrm{m}^{3}$, liquid limit 40\%, void ratio 1.05. There are nine piles in the group arranged in a square pattern with centre to centre spacing 500 mm . Hard stratum exists at a depth of 7 m . Estimate the settlement of a pile group.
[8+8]
3. (a) What are the various problems associated with expansive soils in Civil Engineering.
(b) When are the uses of under-reamed piles? Analyse a typical under-reamed pile and give the various design implications.
4. (a) Explain the design of foundation when a dense stratum overlie a loose one.
(b) A footing $2 \mathrm{~m} \times 2 \mathrm{~m}$ has to carry an axial load of 600 kN with $\mathrm{M}_{x}=180 \mathrm{kN} . \mathrm{m}$ and $\mathrm{M}_{y}=60 \mathrm{kN} . \mathrm{m}$. The soil has $\mathrm{c}=15 \mathrm{kN} / \mathrm{m}^{2}, \phi=25^{0}$ and $\gamma=20 \mathrm{kN} / \mathrm{m}^{3}$. The depth of foundation is 1.5 m . Find the safety of the footing, if the ground water level can be assumed to rise up to the foundation level. $\quad[6+10]$
5. (a) How do you estimate the settlement of a footing on clay using Janbu's method?
(b) A rectangular footing $2 \mathrm{~m} \times 3 \mathrm{~m}$ carries a column load of 600 kN at a depth of 1 m . The footing rests on $\mathrm{c}-\phi$ soil strata of 6 m thick having Poisson's ratio of 0.25 and modulus of elasticity as $20000 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the immediate elastic settlement of the footing. Influence factor $=1.06 . \quad[8+8]$
6. A circular well of 5 m external diameter and steining thickness 1 m is used as foundation for a bridge pier in a sandy stratum. The submerged unit weight of sand is $10 \mathrm{KN} / \mathrm{m}^{3}$ and angle of shearing resistance, ϕ is 30°. The well is subjected to a horizontal force of 50 tones and a total moment of $500 \mathrm{t}-\mathrm{m}$ at the scour level. The depth of well below scour level is 12 m . Assuming the well to be a heavy well, calculate the total horizontal equivalent resisting force the well can resist: Further, what will be the change in value, if the maximum scour level is subjected to a surcharge equivalent to 2 m height of soil.
7. (a) Classify the piles based on the material and use.
(b) A group of 9 piles, 12 m long and 250 mm in diameter is to be arranged in a square pattern in clayey soil with an average unconfined compressive strength of $60 \mathrm{kN} / \mathrm{m}^{2}$. Work out the spacing of piles for a group efficiency factor 1.0. Neglect the bearing at the tip of the piles.
8. The pressure surface of a retaining wall slopes up and away from the backfill with a batter of 1 in 10 . The backfill is a non-cohesive soil with a density of $19.2 \mathrm{kN} / \mathrm{m}^{3}$ and angle of internal friction 35°. The angle of surcharge is 4^{0}, the angle of wall friction is estimated to be 20°, and the vertical height of the wall is 12 m . Compute the maximum active thrust on the wall.
