$\mathbf{R05}$

IV B.Tech I Semester Examinations, November 2010 ADVANCED FOUNDATION ENGINEERING **Civil Engineering**

Time: 3 hours

Code No: R05410107

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Explain the design of foundation when a dense stratum overlie a loose one.
 - (b) A footing $2m \times 2m$ has to carry an axial load of 600 kN with $M_x = 180$ kN.m and $M_y = 60$ kN.m. The soil has c = 15 kN/m², $\phi = 25^0$ and $\gamma = 20$ kN/m³. The depth of foundation is 1.5 m. Find the safety of the footing, if the ground water level can be assumed to rise up to the foundation level. [6+10]
- 2. (a) How do you estimate the settlement of a footing on clay using Janbu's method?
 - (b) A rectangular footing $2m \times 3m$ carries a column load of 600 kN at a depth of 1 m. The footing rests on c- ϕ soil strata of 6 m thick having Poisson's ratio of 0.25 and modulus of elasticity as 20000 kN/m^2 . Calculate the immediate elastic settlement of the footing. Influence factor = 1.06. |8+8|
- (a) What are the various problems associated with expansive soils in Civil Engi-3. neering.
 - (b) When are the uses of under-reamed piles? Analyse a typical under-reamed pile and give the various design implications. 16
- 4. The pressure surface of a retaining wall slopes up and away from the backfill with a batter of 1 in 10. The backfill is a non-cohesive soil with a density of 19.2 kN/m^3 and angle of internal friction 35° . The angle of surcharge is 4° , the angle of wall friction is estimated to be 20° , and the vertical height of the wall is 12 m. Compute the maximum active thrust on the wall. [16]
- 5. (a) Explain the Reese and Matlock's approach for laterally loaded piles analysis.
 - (b) A 200 mm diameter, 5 m long piles are used as foundations for a column carrying 500 kN in a uniform deposit of normally consolidated clay having $\gamma_{sat} = 19 \text{ kN/m}^3$, liquid limit 40%, void ratio 1.05. There are nine piles in the group arranged in a square pattern with centre to centre spacing 500 mm. Hard stratum exists at a depth of 7 m. Estimate the settlement of a pile [8+8]group.
- 6. A circular well of 5 m external diameter and steining thickness 1 m is used as foundation for a bridge pier in a sandy stratum. The submerged unit weight of sand is 10 KN/m³ and angle of shearing resistance, ϕ is 30⁰. The well is subjected to a horizontal force of 50 tones and a total moment of 500 t - m at the scour level. The depth of well below scour level is 12 m. Assuming the well to be a heavy well, calculate the total horizontal equivalent resisting force the well can resist: Further, what will be the change in value, if the maximum scour level is subjected to a surcharge equivalent to 2 m height of soil. [16]

www.firstranker.com

Code No: R05410107

 $\mathbf{R05}$

Set No. 2

- 7. (a) Classify the piles based on the material and use.
 - (b) A group of 9 piles, 12 m long and 250 mm in diameter is to be arranged in a square pattern in clayey soil with an average unconfined compressive strength of 60 kN/m². Work out the spacing of piles for a group efficiency factor 1.0. Neglect the bearing at the tip of the piles. [8+8]
- 8. The height of a cantilever sheet pile from the top of the dredge level is 9m. The water level in the backfill is at 2m from top. Find the depth of penetration required for a factor of safety equal to 1. Assume that above the water table, the soil is dry. The other properties of soil are: $\gamma_{sat} = 20 \text{ kN/m}^3$, $K_A = 0.33$, $K_p = 3.0$, $G_s = 2.6$.

[16]ANK RS

 $\mathbf{R05}$

IV B.Tech I Semester Examinations, November 2010 ADVANCED FOUNDATION ENGINEERING **Civil Engineering**

Time: 3 hours

Code No: R05410107

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. The height of a cantilever sheet pile from the top of the dredge level is 9m. The water level in the backfill is at 2m from top. Find the depth of penetration required for a factor of safety equal to 1. Assume that above the water table, the soil is dry. The other properties of soil are: $\gamma_{sat} = 20 \text{ kN/m^3}$, $K_A = 0.33$, $K_p = 3.0$, $G_s = 2.6$.
 - [16]

- (a) Classify the piles based on the material and use. 2.
 - (b) A group of 9 piles, 12 m long and 250 mm in diameter is to be arranged in a square pattern in clayey soil with an average unconfined compressive strength of 60 kN/m². Work out the spacing of piles for a group efficiency factor 1.0. Neglect the bearing at the tip of the piles. [8+8]
- (a) How do you estimate the settlement of a footing on clay using Janbu's method? 3.
 - (b) A rectangular footing $2m \times 3m$ carries a column load of 600 kN at a depth of 1 m. The footing rests on $c-\phi$ soil strata of 6 m thick having Poisson's ratio of 0.25 and modulus of elasticity as 20000 kN/m^2 . Calculate the immediate elastic settlement of the footing. Influence factor = 1.06. |8+8|
- (a) Explain the design of foundation when a dense stratum overlie a loose one. 4.
 - (b) A footing $2m \times 2m$ has to carry an axial load of 600 kN with $M_x = 180$ kN.m and $M_y = 60$ kN.m. The soil has c = 15 kN/m², $\phi = 25^0$ and $\gamma = 20$ kN/m³. The depth of foundation is 1.5 m. Find the safety of the footing, if the ground water level can be assumed to rise up to the foundation level. [6+10]
- (a) Explain the Reese and Matlock's approach for laterally loaded piles analysis. 5.
 - (b) A 200 mm diameter, 5 m long piles are used as foundations for a column carrying 500 kN in a uniform deposit of normally consolidated clay having $\gamma_{sat} = 19 \text{ kN/m}^3$, liquid limit 40%, void ratio 1.05. There are nine piles in the group arranged in a square pattern with centre to centre spacing 500 mm. Hard stratum exists at a depth of 7 m. Estimate the settlement of a pile group. [8+8]
- 6. A circular well of 5 m external diameter and steining thickness 1 m is used as foundation for a bridge pier in a sandy stratum. The submerged unit weight of sand is 10 KN/m³ and angle of shearing resistance, ϕ is 30⁰. The well is subjected to a horizontal force of 50 tones and a total moment of 500 t - m at the scour level. The depth of well below scour level is 12 m. Assuming the well to be a heavy well, calculate the total horizontal equivalent resisting force the well can resist: Further,

Code No: R05410107

 $\mathbf{R05}$

Set No. 4

what will be the change in value, if the maximum scour level is subjected to a surcharge equivalent to 2 m height of soil. [16]

- 7. (a) What are the various problems associated with expansive soils in Civil Engineering.
 - (b) When are the uses of under-reamed piles? Analyse a typical under-reamed pile and give the various design implications. [16]
- 8. The pressure surface of a retaining wall slopes up and away from the backfill with a batter of 1 in 10. The backfill is a non-cohesive soil with a density of 19.2 kN/m³ and angle of internal friction 35⁰. The angle of surcharge is 4⁰, the angle of wall friction is estimated to be 20⁰, and the vertical height of the wall is 12 m. Compute the maximum active thrust on the wall. [16]

R

Nr Nr

 $\mathbf{R05}$

IV B.Tech I Semester Examinations, November 2010 ADVANCED FOUNDATION ENGINEERING **Civil Engineering**

Time: 3 hours

Code No: R05410107

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. A circular well of 5 m external diameter and steining thickness 1 m is used as foundation for a bridge pier in a sandy stratum. The submerged unit weight of sand is 10 KN/m³ and angle of shearing resistance, ϕ is 30⁰. The well is subjected to a horizontal force of 50 tones and a total moment of 500 t - m at the scour level. The depth of well below scour level is 12 m. Assuming the well to be a heavy well, calculate the total horizontal equivalent resisting force the well can resist: Further, what will be the change in value, if the maximum scour level is subjected to a surcharge equivalent to 2 m height of soil. [16]
- (a) Explain the design of foundation when a dense stratum overlie a loose one. 2.
 - (b) A footing $2m \times 2m$ has to carry an axial load of 600 kN with $M_x = 180$ kN.m and $M_y = 60$ kN.m. The soil has c = 15 kN/m², $\phi = 25^0$ and $\gamma = 20$ kN/m³. The depth of foundation is 1.5 m. Find the safety of the footing, if the ground water level can be assumed to rise up to the foundation level. [6+10]
- 3. The pressure surface of a retaining wall slopes up and away from the backfill with a batter of 1 in 10. The backfill is a non-cohesive soil with a density of 19.2 kN/m^3 and angle of internal friction 35° . The angle of surcharge is 4° , the angle of wall friction is estimated to be 20° , and the vertical height of the wall is 12 m. Compute the maximum active thrust on the wall. [16]
- 4. (a) What are the various problems associated with expansive soils in Civil Engineering.
 - (b) When are the uses of under-reamed piles? Analyse a typical under-reamed pile and give the various design implications. [16]
- (a) How do you estimate the settlement of a footing on clay using Janbu's method? 5.
 - (b) A rectangular footing $2m \times 3m$ carries a column load of 600 kN at a depth of 1 m. The footing rests on $c-\phi$ soil strata of 6 m thick having Poisson's ratio of 0.25 and modulus of elasticity as 20000 kN/m^2 . Calculate the immediate elastic settlement of the footing. Influence factor = 1.06. [8+8]
- 6. The height of a cantilever sheet pile from the top of the dredge level is 9m. The water level in the backfill is at 2m from top. Find the depth of penetration required for a factor of safety equal to 1. Assume that above the water table, the soil is dry. The other properties of soil are: $\gamma_{sat} = 20 \text{ kN/m}^3$, $K_A = 0.33$, $K_p = 3.0$, $G_s = 2.6$.

[16]

7. (a) Classify the piles based on the material and use.

www.firstranker.com

Code No: R05410107

 $\mathbf{R05}$

Set No. 1

- (b) A group of 9 piles, 12 m long and 250 mm in diameter is to be arranged in a square pattern in clayey soil with an average unconfined compressive strength of 60 kN/m². Work out the spacing of piles for a group efficiency factor 1.0. Neglect the bearing at the tip of the piles. [8+8]
- 8. (a) Explain the Reese and Matlock's approach for laterally loaded piles analysis.
 - (b) A 200 mm diameter, 5 m long piles are used as foundations for a column carrying 500 kN in a uniform deposit of normally consolidated clay having $\gamma_{sat} = 19 \text{ kN/m}^3$, liquid limit 40%, void ratio 1.05. There are nine piles in the group arranged in a square pattern with centre to centre spacing 500 mm. Hard stratum exists at a depth of 7 m. Estimate the settlement of a pile group. [8+8]

RS

AL

 $\mathbf{R05}$

IV B.Tech I Semester Examinations, November 2010 ADVANCED FOUNDATION ENGINEERING Civil Engineering

Time: 3 hours

Code No: R05410107

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. The height of a cantilever sheet pile from the top of the dredge level is 9m. The water level in the backfill is at 2m from top. Find the depth of penetration required for a factor of safety equal to 1. Assume that above the water table, the soil is dry. The other properties of soil are: $\gamma_{sat} = 20 \text{ kN/m}^3$, $K_A = 0.33$, $K_p = 3.0$, $G_s = 2.6$. [16]
- 2. (a) Explain the Reese and Matlock's approach for laterally loaded piles analysis.
 - (b) A 200 mm diameter, 5 m long piles are used as foundations for a column carrying 500 kN in a uniform deposit of normally consolidated clay having $\gamma_{sat} = 19 \text{ kN/m}^3$, liquid limit 40%, void ratio 1.05. There are nine piles in the group arranged in a square pattern with centre to centre spacing 500 mm. Hard stratum exists at a depth of 7 m. Estimate the settlement of a pile group. [8+8]
- 3. (a) What are the various problems associated with expansive soils in Civil Engineering.
 - (b) When are the uses of under-reamed piles? Analyse a typical under-reamed pile and give the various design implications. [16]
- 4. (a) Explain the design of foundation when a dense stratum overlie a loose one.
 - (b) A footing $2m \times 2m$ has to carry an axial load of 600 kN with $M_x = 180$ kN.m and $M_y = 60$ kN.m. The soil has c = 15 kN/m², $\phi = 25^0$ and $\gamma = 20$ kN/m³. The depth of foundation is 1.5 m. Find the safety of the footing, if the ground water level can be assumed to rise up to the foundation level. [6+10]
- 5. (a) How do you estimate the settlement of a footing on clay using Janbu's method?
 - (b) A rectangular footing $2m \times 3m$ carries a column load of 600 kN at a depth of 1 m. The footing rests on c- ϕ soil strata of 6 m thick having Poisson's ratio of 0.25 and modulus of elasticity as 20000 kN/m². Calculate the immediate elastic settlement of the footing. Influence factor = 1.06. [8+8]
- 6. A circular well of 5 m external diameter and steining thickness 1 m is used as foundation for a bridge pier in a sandy stratum. The submerged unit weight of sand is 10 KN/m³ and angle of shearing resistance, ϕ is 30⁰. The well is subjected to a horizontal force of 50 tones and a total moment of 500 t m at the scour level. The depth of well below scour level is 12 m. Assuming the well to be a heavy well, calculate the total horizontal equivalent resisting force the well can resist: Further, what will be the change in value, if the maximum scour level is subjected to a surcharge equivalent to 2 m height of soil. [16]

www.firstranker.com

Code No: R05410107

 $\mathbf{R05}$

Set No. 3

- 7. (a) Classify the piles based on the material and use.
 - (b) A group of 9 piles, 12 m long and 250 mm in diameter is to be arranged in a square pattern in clayey soil with an average unconfined compressive strength of 60 kN/m². Work out the spacing of piles for a group efficiency factor 1.0. Neglect the bearing at the tip of the piles. [8+8]
- 8. The pressure surface of a retaining wall slopes up and away from the backfill with a batter of 1 in 10. The backfill is a non-cohesive soil with a density of 19.2 kN/m³ and angle of internal friction 35⁰. The angle of surcharge is 4⁰, the angle of wall friction is estimated to be 20⁰, and the vertical height of the wall is 12 m. Compute the maximum active thrust on the wall. [16]

AL

www.firstranker.com