IV B.Tech I Semester Examinations,NOVEMBER 2010 FINITE ELEMENT METHOD
Common to Mechanical Engineering, Production Engineering, Automobile Engineering
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Write down six 3D strain - displacement equations.
(b) Explain the Principle of Minimum Potential Energy.
$[8+8]$
2. (a) Explain about Natural Co-ordinates system.
(b) The nodal coordinates and its functional value of a triangular linear element is given below. Calculate the value at $(36,9)$.

	Co-ordinates	Value
Node 1	$(31,16)$	130
Node 2	$(38,9)$	94
Node 3	$(31,13)$	125

3. (a) How do you calculate the element stresses for 3-Dimensional body?
(b) Derive the element stiffness term and force term for four noded tetrahedral elements.
4. A beam of 4 m length is subjected to point loads at the distances of 2 m and 4 m from the fixed end of 10 kN and 20 kN respectively. Calculate the deflection at the center of the beam, if $\mathrm{E}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and $\mathrm{A}=400 \mathrm{~mm}^{2}$. \{As shown in the Figure 5\}
[16]

Figure 5
5. (a) From first principles, derive the general equation for elemental mass matrix?
(b) Derive the elemental mass matrix for 2-D triangular element?
[8+8]
6. Discuss the finite element methodology to solve the torsion problems from the first principles?
[16]
7. Starting from the first principles derive the stiffness matrix for a 1-D bar element and extend it for the plane truss element?
8. Derive stiffness equations for a bar element from the one dimensional second order equation by variated approach.

IV B.Tech I Semester Examinations,NOVEMBER 2010 FINITE ELEMENT METHOD

Common to Mechanical Engineering, Production Engineering, Automobile Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

* * * * \star

1. Derive stiffness equations for a bar element from the one dimensional second order equation by variated approach.
2. Starting from the first principles derive the stiffness matrix for a 1 - D bar element and extend it for the plane truss element?
3. Discuss the finite element methodology to solve the torsion problems from the first principles?
4. A beam of 4 m length is subjected to point loads at the distances of 2 m and 4 m from the fixed end of 10 kN and 20 kN respectively. Calculate the deflection at the center of the beam, if $\mathrm{E}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and $\mathrm{A}=400 \mathrm{~mm}^{2}$. \{As shown in the Figure 5\}
[16]

Figure 5
5. (a) From first principles, derive the general equation for elemental mass matrix?
(b) Derive the elemental mass matrix for 2-D triangular element? $[8+8]$
6. (a) Write down six 3D strain - displacement equations.
(b) Explain the Principle of Minimum Potential Energy.
7. (a) How do you calculate the element stresses for 3-Dimensional body?
(b) Derive the element stiffness term and force term for four noded tetrahedral elements.
[8+8]
8. (a) Explain about Natural Co-ordinates system.
(b) The nodal coordinates and its functional value of a triangular linear element is given below. Calculate the value at $(36,9)$.
[6+10]

	Co-ordinates	Value
Node 1	$(31,16)$	130
Node 2	$(38,9)$	94
Node 3	$(31,13)$	125

IV B.Tech I Semester Examinations,NOVEMBER 2010 FINITE ELEMENT METHOD
Common to Mechanical Engineering, Production Engineering, Automobile Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. A beam of 4 m length is subjected to point loads at the distances of 2 m and 4 m from the fixed end of 10 kN and 20 kN respectively. Calculate the deflection at the center of the beam, if $\mathrm{E}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and $\mathrm{A}=400 \mathrm{~mm}^{2}$. \&As shown in the Figure 5\}

Figure 5
2. (a) Write down six 3 D strain- displacement equations.
(b) Explain the Principle of Minimum Potential Energy.
3. (a) Explain about Natural Co-ordinates system.
(b) The nodal coordinates and its functional value of a triangular linear element is given below. Calculate the value at $(36,9)$.
[6+10]

	Co-ordinates	Value
Node 1	$(31,16)$	130
Node 2	$(38,9)$	94
Node 3	$(31,13)$	125

4. (a) How do you calculate the element stresses for 3-Dimensional body?
(b) Derive the element stiffness term and force term for four noded tetrahedral elements.
5. Derive stiffness equations for a bar element from the one dimensional second order equation by variated approach.
6. Discuss the finite element methodology to solve the torsion problems from the first principles?
7. (a) From first principles, derive the general equation for elemental mass matrix?
(b) Derive the elemental mass matrix for 2-D triangular element?
8. Starting from the first principles derive the stiffness matrix for a 1- D bar element and extend it for the plane truss element?

IV B.Tech I Semester Examinations,NOVEMBER 2010 FINITE ELEMENT METHOD

Common to Mechanical Engineering, Production Engineering, Automobile Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Derive stiffness equations for a bar element from the one dimensional second order equation by variated approach.
2. Starting from the first principles derive the stiffness matrix for a 1-D bar element and extend it for the plane truss element?
3. Discuss the finite element methodology to solve the torsion problems from the first principles?
4. (a) Explain about Natural Co-ordinates system.
(b) The nodal coordinates and its functional value of a triangular linear element is given below. Calculate the value at $(36,9)$.

	Co-ordinates	Value
Node 1	$(31,16)$	130
Node 2	$(38,9)$	94
Node 3	$(31,13)$	125

5. A beam of 4 m length is subjected to point loads at the distances of 2 m and 4 m from the fixed end of 10 kN and 20 kN respectively. Calculate the deflection at the center of the beam, if $\mathrm{E}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and $\mathrm{A}=400 \mathrm{~mm}^{2}$. \{As shown in the Figure 5\}

Figure 5
6. (a) How do you calculate the element stresses for 3-Dimensional body?
(b) Derive the element stiffness term and force term for four noded tetrahedral elements.
7. (a) Write down six 3D strain - displacement equations.
(b) Explain the Principle of Minimum Potential Energy.
8. (a) From first principles, derive the general equation for elemental mass matrix?
(b) Derive the elemental mass matrix for 2-D triangular element?

