# I B.Tech Examinations,December 2010 <br> BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Bio-Technology 

Time: 3 hours

## Answer any FIVE Questions

All Questions carry equal marks

1. What are the necessary torques required in an indicating instrument? Explain.[16]
2. Three resistance of $25 \Omega$ each are connected in Delta across a $400 \mathrm{~V}, 3$ phase AC supply. Calculate
(a) Line and phase currents
(b) Phase voltage
(c) Power consumed.
3. Write the steps involved in the design procedure for Asynchronous sequential circuits. Design a type of T flip - flop from logic gates.
4. (a) Draw the circuit and explain the eharacteristics of CB configuration.
(b) Write short notes about thermal tunaway problems.
5. (a) Show that maximum collector efficiency of class B amplifier is $78.6 \%$.
(b) Draw neatly the configuration of push - pull amplifier and explain its working. Derive the collector efficiency.
6. A Hartley oscillator is designed with $L_{1}=2 \mathrm{mH}, L_{2}=20 \mu \mathrm{H}$ and a variable capacitance. Determine the range of capacitance values if the frequency of oscillation is varied from 2050 KHz to 3050 KHz .
7. Explain the methods of making single phase induction motor self starting.
8. (a) Give the energy band description of conductors, semiconductors and insulators.
(b) What do you understand by intrinsic and extrinsic semiconductors? [8+8]

# I B.Tech Examinations,December 2010 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Bio-Technology 

Time: 3 hours

## Answer any FIVE Questions All Questions carry equal marks

1. Explain the methods of making single phase induction motor self starting.
2. (a) Draw the circuit and explain the characteristics of CB configuration. [10]
(b) Write short notes about thermal runaway problems.
3. A Hartley oscillator is designed with $L_{1}=2 \mathrm{mH}, L_{2}=20 \mu \mathrm{H}$ and a variable capacitance. Determine the range of capacitance values if the frequency of oscillation is varied from 2050 KHz to 3050 KHz .
4. (a) Give the energy band description of conductors, semiconductors and insulators.
(b) What do you understand by intrinsic and extrinsic semiconductors? [8+8]
5. (a) Show that maximum collector efficiency of class B amplifier is $78.6 \%$.
(b) Draw neatly the configuration of push - pull amplifier and explain its working. Derive the collector efficiency.
6. What are the necessary torques required in an indicating instrument? Explain.[16]
7. Write the steps involved in the design procedure for Asynchronous sequential circuits. Design a type of T flip - flop from logic gates.
8. Three resistance of $25 \Omega$ each are connected in Delta across a $400 \mathrm{~V}, 3$ phase AC supply. Calculate
(a) Line and phase currents
(b) Phase voltage
(c) Power consumed.

# I B.Tech Examinations,December 2010 <br> BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Bio-Technology 

Time: 3 hours

## Answer any FIVE Questions All Questions carry equal marks

1. (a) Show that maximum collector efficiency of class B amplifier is $78.6 \%$.
(b) Draw neatly the configuration of push - pull amplifier and explain its working. Derive the collector efficiency.
2. (a) Give the energy band description of conductors, semiconductors and insulators.
(b) What do you understand by intrinsic and extrinsic semiconductors? [8+8]
3. Explain the methods of making single phase induction motor self starting. [16]
4. What are the necessary torques required in an indicating instrument? Explain.[16]
5. Three resistance of $25 \Omega$ each are connected in Delta across a $400 \mathrm{~V}, 3$ phase AC supply. Calculate
(a) Line and phase-currents
(b) Phase voltage
(c) Power consumed.
6. (a) Draw the circuit and explain the characteristics of CB configuration. [10]
(b) Writeshort notes about thermal runaway problems.
7. A Hartley oscillator is designed with $L_{1}=2 \mathrm{mH}, L_{2}=20 \mu \mathrm{H}$ and a variable capacitance. Determine the range of capacitance values if the frequency of oscillation is varied from 2050 KHz to 3050 KHz .
8. Write the steps involved in the design procedure for Asynchronous sequential circuits. Design a type of T flip - flop from logic gates.
[16]

# I B.Tech Examinations,December 2010 <br> BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Bio-Technology 

Time: 3 hours
Max Marks: 80

## Answer any FIVE Questions All Questions carry equal marks

1. What are the necessary torques required in an indicating instrument? Explain.[16]
2. Write the steps involved in the design procedure for Asynchronous sequential circuits. Design a type of T flip - flop from logic gates.
3. (a) Show that maximum collector efficiency of class B amplifier is $78.6 \%$.
(b) Draw neatly the configuration of push - pull amplifier and explann its working. Derive the collector efficiency.
4. (a) Draw the circuit and explain the characteristics of CB configuration. [10]
(b) Write short notes about thermal runaway problems.
5. A Hartley oscillator is designed with $L_{1}=2 \mathrm{nH}, L_{2}=20 \mu \mathrm{H}$ and a variable capacitance. Determine the range of capacitance values if the frequency of oscillation is varied from 2050 KHz to 3050 KHz .
6. (a) Give the energy band description of conductors, semiconductors and insulators.
(b) What do you understand by intrinsic and extrinsic semiconductors? [8+8]
7. Three resistance of $25 \Omega$ each are connected in Delta across a $400 \mathrm{~V}, 3$ phase AC supply. Calculate
(a) Line and phase currents
(b) Phase voltage
(c) Power consumed.
8. Explain the methods of making single phase induction motor self starting.
