1. (a) Draw and explain a fixed bias circuit. Explain why the circuit is unsatisfactory if the transistor is replaced by another of the same type.
(b) Find the value of thermal resistance required for the Ge transistor for self bias circuit with the collector current of 1.5 mA at $25^{0} \mathrm{C}$ and it increases by 0.131 mA over a temperature range of 25 to $75^{\circ} \mathrm{C}$ in order for the circuit to be thermally stable. Assume $\mathrm{V}_{c c}=30 \mathrm{~V}$ and $\mathrm{R}_{c}=2.0 \mathrm{~K}$ and $\mathrm{R}_{e}=4.7 \mathrm{~K} . \quad[8+8]$
2. (a) Explain the input and output characteristios of BJT in CB configuration.
(b) Compare important characteristics of B.TT and FET.
3. (a) Draw and explain the approximate model of a CC amplifier.
(b) Find the voltage gain and current gain of a CE amplifier whose $\mathrm{h}_{\mathrm{ie}}=1 \mathrm{~K} \Omega, \mathrm{~h}_{\mathrm{fe}}=50$, $\mathrm{h}_{\mathrm{re}}=2.5 \times 10^{-4}, \mathrm{~h}_{\mathrm{oe}}=25 \mu \mathrm{~A} / \mathrm{V}$. Consider the source and load resistance of $1 \mathrm{~K} \Omega$ both.
4. (a) Explain the construction, operation and applications of the varactor diode.
(b) In a p-type semiconductor, the Fermi level lies 0.4 eV above the valance band. Determine the new position of the Fermi level if the concentration of acceptor atoms is multiplied by a factor of:
i. 0.5 and
ii. 4.0 .
$\mathrm{KT}=0.025 \mathrm{eV}$.
5. (a) Draw the schematic diagram of a CRT and explain about the various sections and the materials used.
(b) In a CRT, the electrons emitted are accelerated by a potential of 500 V . The length of the deflecting plates is 1.3 cm . Distance between the deflecting plates is 0.5 cm . The distance between the centre of the deflecting plates and the screen is 20 cm . Determine the value of electrostatic deflection sensitivity.

$$
[8+8]
$$

6. (a) Prove that the amplitude of the oscillations is limited by the onset of nonlinearity.
(b) Design a phase-shift oscillator to operate at a frequency of 5 kHz . Use a MOSFET with $\mu=55$ and $\mathrm{r}_{d}=5.5 \mathrm{~K}$. The phase shift network is not to load down the amplifier. Find the minimum value of the drain circuit resistance Rd for which the circuit will oscillate.
[8+8]
7. (a) Derive the expression for ripple factor in a full wave rectifier using an inductor filter.
(b) In a full wave rectifier usmg an LC -fileer $\mathrm{L}=10 \mathrm{H}, \mathrm{C}=100 \mu \mathrm{~F}$ and $\mathrm{R}_{L}=500 \Omega$. Calculate $\mathrm{I}_{d c}, \mathrm{~V}_{d c}$ for an input $\mathrm{V} \Rightarrow 30 \sin (100 \pi \mathrm{t})$.
[8+8]
8. (a) State the three fundamental assumptions which are made in order that the expression $A_{f}=A /(1+\beta)$ be satisfied exactly.
(b) The output impedance may be calculated as the ratio of the open circuit voltage to the short circuit current. Using this method evaluate output resistance with feedback $\mathrm{R}_{\text {of }}$ for a voltage-series feedback amplifier.
[6+10]

I B.Tech Examinations,December 2010 BASIC ELECTRONIC DEVICES AND CIRCUITS

Electrical And Electronics Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Derive the expression for ripple factor in a full wave rectifier using an inductor filter.
(b) In a full wave rectifier using an LC-filter $\mathrm{L}=10 \mathrm{H}, \mathrm{C}=100 \mu \mathrm{~F}$ and $\mathrm{R}_{L}=500 \Omega$. Calculate $\mathrm{I}_{d c}, \mathrm{~V}_{d c}$ for an input $\mathrm{V}=30 \sin (100 \pi \mathrm{t})$.

$$
[8+8]
$$

2. (a) Explain the input and output characteristics of BJT in CB configuration.
(b) Compare important characteristics of BJT and FET.
$[10+6]$
3. (a) Explain the construction, operation and applications of the varactor diode.
(b) In a p-type semiconductor, the Fermi level lies 0.4 eV above the valance band. Determine the new position of the Fermilevel if the concentration of acceptor atoms is multiplied by a factor of
i. 0.5 and
ii. 4.0.
$\mathrm{KT}=0.025 \mathrm{eV}$.

$$
[10+6]
$$

4. (a) Draw and explain the approximate model of a CC amplifier.
(b) Find the voltage gain and current gain of a CE amplifier whose $\mathrm{h}_{\mathrm{ie}}=1 \mathrm{~K} \Omega$, $\mathrm{h}_{\mathrm{fe}}=50$, $\mathrm{h}_{\mathrm{re}}=2.5 \times 10^{-4}, \mathrm{~h}_{\mathrm{oe}}=25 \mu \mathrm{~A} / \mathrm{V}$. Consider the source and load resistance of $1 \mathrm{~K} \Omega$ both,
5. (a) Prove that the amplitude of the oscillations is limited by the onset of nonlinearity.
(b) Design a phase-shift oscillator to operate at a frequency of 5 kHz . Use a MOSFET with $\mu=55$ and $\mathrm{r}_{d}=5.5 \mathrm{~K}$. The phase shift network is not to load down the amplifier. Find the minimum value of the drain circuit resistance Rd for which the circuit will oscillate.
6. (a) Draw and explain a fixed bias circuit. Explain why the circuit is unsatisfactory if the transistor is replaced by another of the same type.
(b) Find the value of thermal resistance required for the Ge transistor for self bias circuit with the collector current of 1.5 mA at $25^{\circ} \mathrm{C}$ and it increases by 0.131 mA over a temperature range of 25 to $75^{\circ} \mathrm{C}$ in order for the eircuit to be thermally stable. Assume $\mathrm{V}_{c c}=30 \mathrm{~V}$ and $\mathrm{R}_{c}=2.0 \mathrm{~K}$ and $\mathrm{R}_{e}=4.7 \mathrm{~K} . \quad[8+8]$
7. (a) State the three fundamental assumptions which are made in order that the expression $\mathrm{A}_{f}=\mathrm{A} /(1+\mathrm{A} \beta)$ be satisfied exactly.
(b) The output impedance may be calculated as the ratio of the open circuit voltage to the short circuit current. Using this method evaluate output resistance with feedback $\mathrm{R}_{\text {of }}$ for a voltage-series feedback amplifier. $\quad[6+10]$
8. (a) Draw the schematic diagram of a CRT and explain about the various sections and the materials used.
(b) In a CRT, the electrons emitted are accelerated by a potential of 500 V . The length of the deflecting plates is 1.3 cm . Distance between the deflecting plates is 0.5 cm . The distance between the centre of the deflecting plates and the screen is 20 cm . Determine the value of electrostatic deflection sensitivity.
[8+8]

I B.Tech Examinations,December 2010 BASIC ELECTRONIC DEVICES AND CIRCUITS

Electrical And Electronics Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) State the three fundamental assumptions which are made in order that the expression $\mathrm{A}_{f}=\mathrm{A} /(1+\mathrm{A} \beta)$ be satisfied exactly.
(b) The output impedance may be calculated as the ratio of the open circuit voltage to the short circuit current. Using this method evaluate output resistance with feedback $\mathrm{R}_{\text {of }}$ for a voltage-series feedback amplifier. [6+10]
2. (a) Derive the expression for ripple factor in a full wâve rectifier using an inductor filter.
(b) In a full wave rectifier using an LC-filter $\mathrm{L}=10 \mathrm{H}, \mathrm{C}=100 \mu \mathrm{~F}$ and $\mathrm{R}_{L}=500 \Omega$. Calculate $\mathrm{I}_{d c}, \mathrm{~V}_{d c}$ for an input $\mathrm{V}=30 \sin (100 \pi \mathrm{t})$.
[8+8]
3. (a) Draw and explain the approximate model of a CC amplifier.
(b) Find the voltage gain and current gain of a CE amplifier whose $\mathrm{h}_{\mathrm{ie}}=1 \mathrm{~K} \Omega, \mathrm{~h}_{\mathrm{fe}}=50$, $\mathrm{h}_{\mathrm{re}}=2.5 \times 10^{-4}, \mathrm{~h}_{\mathrm{oe}}=25 \mu \mathrm{~A} / \mathrm{V}$. Consider the source and load resistance of $1 \mathrm{~K} \Omega$ both.
4. (a) Explain the construction, operation and applications of the varactor diode.
(b) In a p-type semiconductor, the Fermi level lies 0.4 eV above the valance band. Determine the new position of the Fermi level if the concentration of acceptor atoms is multiplied by a factor of:
i. 0.5 and
ii. 4.0 .
$\mathrm{KT}=0.025 \mathrm{eV}$.
5. (a) Explain the input and output characteristics of BJT in CB configuration.
(b) Compare important characteristics of BJT and FET.
6. (a) Prove that the amplitude of the oscillations is limited by the onset of nonlinearity.
(b) Design a phase-shift oscillator to operate at a frequency of 5 kHz . Use a MOSFET with $\mu=55$ and $\mathrm{r}_{d}=5.5 \mathrm{~K}$. The phase shift network is not to load down the amplifier. Find the minimum value of the drain circuit resistance Rd for which the circuit will oscillate.
7. (a) Draw the schematic diagram of a CRT and explain about the yarious sections and the materials used.
(b) In a CRT, the electrons emitted are accelerated by a potential of 500 V . The length of the deflecting plates is 1.3 cm . Distance between the deflecting plates is 0.5 cm . The distance between the centre of the deflecting plates and the screen is 20 cm . Determine the value of electrostatic deflection sensitivity.
[8+8]
8. (a) Draw and explain a fixed bias circuit. Explain why the circuit is unsatisfactory if the transistor is replaced by another of the same type.
(b) Find the value of thermal resistance required for the Ge transistor for self bias circuit with the collector current of 1.5 mA at $25^{\circ} \mathrm{C}$ and it increases by 0.131 AA over a temperature range of 25 to $75^{0} \mathrm{C}$ in order for the circuit to be thermally stable. Assume $\mathrm{V}_{c c}=30 \mathrm{~V}$ and $\mathrm{R}_{c}=2.0 \mathrm{~K}$ and $\mathrm{R}_{e}=4.7 \mathrm{~K}$. $\quad[8+8]$

I B.Tech Examinations,December 2010 BASIC ELECTRONIC DEVICES AND CIRCUITS

Electrical And Electronics Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) State the three fundamental assumptions which are made in order that the expression $\mathrm{A}_{f}=\mathrm{A} /(1+\mathrm{A} \beta)$ be satisfied exactly.
(b) The output impedance may be calculated as the ratio of the open circuit voltage to the short circuit current. Using this method evaluate output resistance with feedback $\mathrm{R}_{o f}$ for a voltage-series feedback amplifier. [6+10]
2. (a) Draw and explain the approximate model of a CC amplifier.
(b) Find the voltage gain and current gain of a CE amplifier whose $\mathrm{h}_{\mathrm{ie}}=1 \mathrm{~K} \Omega, \mathrm{~h}_{\mathrm{fe}}=50$, $\mathrm{h}_{\mathrm{re}}=2.5 \times 10^{-4}, \mathrm{~h}_{\mathrm{oe}}=25 \mu \mathrm{~A} / \mathrm{V}$. Consider the source and load resistance of $1 \mathrm{~K} \Omega$ both.
[8+8]
3. (a) Derive the expression for ripple factor in a full wave rectifier using an inductor filter.
(b) In a full wave rectifier using an LC -filter $\mathrm{L}=10 \mathrm{H}, \mathrm{C}=100 \mu \mathrm{~F}$ and $\mathrm{R}_{L}=500 \Omega$.

Calculate $\mathrm{I}_{d c},{ }_{d c}$ for an input $\mathrm{V}=30 \sin (100 \pi \mathrm{t})$. $\quad[8+8]$
4. (a) Prove that the amplitude of the oscillations is limited by the onset of nonlinearity.
(b) Design a phase-shift oscillator to operate at a frequency of 5 kHz . Use a MOSFET with $\mu=55$ and $\mathrm{r}_{d}=5.5 \mathrm{~K}$. The phase shift network is not to load down
the amplifier. Find the minimum value of the drain circuit resistance Rd for which the circuit will oscillate.
[8+8]
5. (a) Draw and explain a fixed bias circuit. Explain why the circuit is unsatisfactory if the transistor is replaced by another of the same type.
(b) Find the value of thermal resistance required for the Ge transistor for self bias circuit with the collector current of 1.5 mA at $25^{\circ} \mathrm{C}$ and it increases by 0.131 mA over a temperature range of 25 to $75^{0} \mathrm{C}$ in order for the circuit to be thermally stable. Assume $\mathrm{V}_{c c}=30 \mathrm{~V}$ and $\mathrm{R}_{c}=2.0 \mathrm{~K}$ and $\mathrm{R}_{e}=4.7 \mathrm{~K}$. $\quad[8+8]$
6. (a) Explain the input and output characteristics of BJT in CB configuration.
(b) Compare important characteristics of BJT and FET.
7. (a) Draw the schematic diagram of a CRT and explain abont the rarious sections and the materials used.
(b) In a CRT, the electrons emitted are accelerated by a potential of 500 V . The length of the deflecting plates is 1.3 cm . Distance between the deflecting plates is 0.5 cm . The distance between the centre of the deflecting plates and the screen is 20 cm . Determine the value of electrostatic deflection sensitivity.

$$
[8+8]
$$

8. (a) Explain the construction, operation and applications of the varactor diode.
(b) In a p-type semiconductor, the Fermi level lies 0.4 eV above the valance band. Determine the new position of the Fermi level if the concentration of acceptor atoms is multiplied by a factor of:

