R07

Set No. 2

I B.Tech Examinations, December 2010 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find the radius of curvature of $x = 2a \sin t + a \sin 2t$, $y = 2a \cos t + a \cos 2t$.
 - (b) Show that the envelope of the circles whose centre lies on the parabola $y^2 = 4ax$ and which passes through its vertex is y^2 (x + 2a) + $x^3 = 0$. [8+8]
- 2. Solve the equation $(D^2 4D + 4)y = e^{2x} + x^2 + \sin 3x$. [16]
- 3. (a) Solve $(x^2 + y^2 a^2) \times dx + (x^2 + y^2 b^2) \times dy = 0$.
 - (b) If 20 percent of a radioactive element disappears in 1 year, compute its halflife.

[8+8]

Code No: R07A1BS02

- 4. (a) Find L⁻¹ [tan⁻¹ s]. (b) Find L⁻¹ [log ((s²+1) /(s² -4))]. [8+8]
- (a) Evaluate $\iiint\limits_V (xy+yz+zx) dxdydz$, where V is the region of space bounded by x=0, x=1, y=0, y=2, z=0, z=3.
 - (b) Find the value of $\iint xy \ dxdy$ taken over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. [8+8] [8+8]
- 6. Verify Stoke's theorem for $\vec{F} = (x^2 y^2)\vec{i} + 2xy\vec{j}$ over the box bounded by the planes x = 0, x = a, y = 0, y = b, z = c. [16]
- 7. (a) Examine the convergence or divergence of $\sum x^{2n-2}/(n+1)n^{1/2}$, x > 0.
 - (b) Examine the convergence or divergence of $\sum \frac{(n!)^2}{(n+1)!} x^n, \ x > 0.$ [8+8]
- (a) Verify Rolle's theorem for $f(x) = x^2 2x 3$ in the interval (1,-3).
 - (b) Prove that $u = \frac{x^2 y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the [8+8]relation between them.

R07

Set No. 4

I B.Tech Examinations, December 2010 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Find L⁻¹ [tan⁻¹ s].

Code No: R07A1BS02

(b) Find L $^{-1}$ [log ((s^2+1) /(s^2 -4))].

[8+8]

- 2. (a) Examine the convergence or divergence of $\sum x^{2n-2}/(n+1)n^{1/2}$, x > 0.
 - (b) Examine the convergence or divergence of $\sum \frac{(n!)^2}{(n+1)!} \, x^n, \, x>0.$

[8+8]

- 3. (a) Find the radius of curvature of $x = 2a \sin t + a \sin 2t$, $y = 2a \cos t + a \cos 2t$.
 - (b) Show that the envelope of the circles whose centre lies on the parabola $y^2 = 4ax$ and which passes through its vertex is y^2 (x + 2a) + $x^3 = 0$. [8+8]
- 4. (a) Evaluate $\iiint\limits_V (xy+yz+zx) dxdydz$, where V is the region of space bounded by x=0, x=1, y=0, y=2, z=0, z=3.
 - (b) Find the value of $\iint xy \ dxdy$ taken over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. [8+8]
- 5. (a) Solve $(x^2 + y^2 a^2) x dx + (x^2 + y^2 b^2) y dy = 0$.
 - (b) If 20 percent of a radioactive element disappears in 1 year, compute its half-life.

[8+8]

- 6. Verify Stoke's theorem for $\vec{F} = (x^2 y^2)\vec{i} + 2xy\vec{j}$ over the box bounded by the planes x = 0, x = a, y = 0, y = b, z = c. [16]
- 7. Solve the equation $(D^2 4D + 4)y = e^{2x} + x^2 + \sin 3x$. [16]
- 8. (a) Verify Rolle's theorem for $f(x) = x^2 2x 3$ in the interval (1,-3).
 - (b) Prove that $u = \frac{x^2 y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the relation between them. [8+8]

R07

Set No. 1

I B.Tech Examinations, December 2010 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE
Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Examine the convergence or divergence of $\sum x^{2n-2}/(n+1)n^{1/2}$, x>0.
 - (b) Examine the convergence or divergence of $\sum \frac{(n!)^2}{(n+1)!} x^n, \ x > 0.$

[8+8]

2. (a) Find L⁻¹ [tan⁻¹ s].

Code No: R07A1BS02

(b) Find $L^{-1} [\log ((s^2+1)/(s^2-4))].$

[8+8]

- 3. (a) Verify Rolle's theorem for $f(x) = x^2 2x 3$ in the interval (1,-3).
 - (b) Prove that $u=\frac{x^2-y^2}{x^2+y^2}$, $v=\frac{2xy}{x^2+y^2}$ are functionally dependent and find the relation between them. [8+8]
- 4. (a) Find the radius of curvature of $x = 2a \sin t + a \sin 2t$, $y = 2a \cos t + a \cos 2t$.
 - (b) Show that the envelope of the circles whose centre lies on the parabola $y^2 = 4ax$ and which passes through its vertex is y^2 (x + 2a) + $x^3 = 0$. [8+8]
- 5. Verify Stoke's theorem for $\vec{F} = (x^2 y^2)\vec{i} + 2xy\vec{j}$ over the box bounded by the planes x = 0, x = a, y = 0, y = b, z = c. [16]
- 6. (a) Solve $(x^2 + y^2 a^2) \times dx + (x^2 + y^2 b^2) \times dy = 0$.
 - (b) If 20 percent of a radioactive element disappears in 1 year, compute its half-life.

[8+8]

- 7. Solve the equation $(D^2 4D + 4)y = e^{2x} + x^2 + \sin 3x$. [16]
- 8. (a) Evaluate $\iiint\limits_V (xy+yz+zx) dxdydz$, where V is the region of space bounded by x=0, x=1, y=0, y=2, z=0, z=3.
 - (b) Find the value of $\iint xy \ dxdy$ taken over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. [8+8]

Code No: R07A1BS02

R07

Set No. 3

I B.Tech Examinations, December 2010 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE
Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Evaluate $\iiint\limits_V (xy+yz+zx) \ dxdydz$, where V is the region of space bounded by x=0, x=1, y=0, y=2, z=0, z=3.
 - (b) Find the value of $\iint xy \, dxdy$ taken over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. [8+8]
- 2. (a) Examine the convergence or divergence of $\sum x^{2n-2}/\left(\ n+1 \right) n^{1/2} \ , \ x>0.$
 - (b) Examine the convergence or divergence of $\sum \frac{(n!)^2}{(n+1)!} x^n, \ x > 0.$ [8+8]
- 3. (a) Solve $(x^2 + y^2 a^2) \times dx + (x^2 + y^2 b^2) \times dy = 0$.
 - (b) If 20 percent of a radioactive element disappears in 1 year, compute its half-life.

[8+8]

- 4. (a) Find the radius of curvature of $x = 2a \sin t + a \sin 2t$, $y = 2a \cos t + a \cos 2t$.
 - (b) Show that the envelope of the circles whose centre lies on the parabola $y^2 = 4ax$ and which passes through its vertex is y^2 (x + 2a) + $x^3 = 0$. [8+8]
- 5. (a) Verify Rolle's theorem for $f(x) = x^2 2x 3$ in the interval (1,-3).
 - (b) Prove that $u = \frac{x^2 y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the relation between them. [8+8]
- 6. Verify Stoke's theorem for $\vec{F} = (x^2 y^2)\vec{i} + 2xy\vec{j}$ over the box bounded by the planes x = 0, x = a, y = 0, y = b, z = c. [16]
- 7. (a) Find L^{-1} [$\tan^{-1} s$].
 - (b) Find $L^{-1} [\log ((s^2+1)/(s^2-4))].$ [8+8]
- 8. Solve the equation $(D^2 4D + 4)y = e^{2x} + x^2 + \sin 3x$. [16]