I B.Tech Examinations,December 2010 MATHEMATICAL METHODS

Common to ME, BME, IT, MECT, MEP, AME, ICE, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) If the interval of differencing is unity, prove that $\Delta \frac{2^{x}}{x!}=\frac{2^{x}(1-x)}{(x+1)!}$
(b) If the interval of differencing is unity, prove that $\Delta[x(x+1)(x+2)(x+3)]$ $=4(\mathrm{x}+1)(\mathrm{x}+2)(\mathrm{x}+3)$.
2. (a) Show that the system of equations $\mathrm{x}+2 \mathrm{y}+\mathrm{z}=3,2 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z}=5$, $3 \mathrm{x}-5 \mathrm{y}+5 \mathrm{z}=2,3 \mathrm{x}+9 \mathrm{y}-\mathrm{z}=4$ are consistent and solve then
(b) Write the following equations in matrix form $\mathrm{AX}=\mathrm{B}$ and solve for X by finding $\mathrm{A}^{-1}: \mathrm{x}+\mathrm{y}-2 \mathrm{z}=3,2 \mathrm{x}-\mathrm{y}+\mathrm{z}=0,3 \mathrm{x}+\mathrm{y}-\mathrm{z}=8 . \quad[8+8]$
3. (a) The table given below reveals the velocity r of a body during the time ' t ' specified. Find its acceleration at $t=1.1$

$$
\begin{array}{cccccc}
\text { t: } & 1.0 & 1.1 & 1.2 & 1.3 & 1.4 \\
\text { v: } & 43.1 & 47.7 & 52.1 & 56.4 & 60.8
\end{array}
$$

(b) Fit a curve of the form $\mathrm{y}=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ to the data:

| $\mathrm{x}:$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{y}:$ | 1.8 | 5.1 | 8.9 | 14.1 | 19.8 |

4. Find the eigen values and the corresponding eigen vectors of the matrix
$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -3 & -3 \\ 2 & 4 & 4\end{array}\right]$
5. Solve numerically using Euler's method and Taylor's method $y^{\prime}=\left(x^{3}+x y^{2}\right) / e^{x}$ given that $y(0)=1$. Find $y(0.1), y(0.2)$ and $y(0.3)$.
6. (a) Solve $(2 z-y) p+(x+z) q=-(2 x+y)$
(b) Solve the difference equation, using Z-transform $\mathrm{x}(\mathrm{k}+2)-5 \mathrm{x}(\mathrm{k}+1)+6 \mathrm{x}(\mathrm{k})=4^{n}$, given $\mathrm{x}(0)=0, \mathrm{x}(1)=1$.
7. (a) If ' a ' is not an integer, find the Fourier Series expansion of period 2π for the function $\mathrm{f}(\mathrm{x})=\operatorname{sinax}$ in $-\pi<\mathrm{x}<\pi$
(b) Find the half-range Sine series for $f(t)=t-t^{2} ; 0<t<1$.
8. Find the rank and index of the quadratic forms and reduce it to canonical form $x_{1}{ }^{2}+2 x_{2}{ }^{2}+6 x_{3}{ }^{2}-2 x_{1} z_{1}+4 y_{1} z_{1}$

I B.Tech Examinations,December 2010
 MATHEMATICAL METHODS

Common to ME, BME, IT, MECT, MEP, AME, ICE, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Solve $(2 z-y) p+(x+z) q=-(2 x+y)$
(b) Solve the difference equation, using Z-transform $\mathrm{x}(\mathrm{k}+2)-5 \mathrm{x}(\mathrm{k}+1)+6 \mathrm{x}(\mathrm{k})=4^{n}$, given $\mathrm{x}(0)=0, \mathrm{x}(1)=1$.
2. Find the eigen values and the corresponding eigen vectors of the matrix
$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -3 & -3 \\ 2 & 4 & 4\end{array}\right]$
3. Solve numerically using Euler's method and Taylor's method $y^{\prime}=\left(x^{3}+x y^{2}\right) / e^{x}$ given that $y(0)=1$. Find $y(0.1), y(0.2)$ and $y(0.3)$.
4. (a) If ' a ' is not an integer, find the Fourier Series expansion of period 2π for the function $\mathrm{f}(\mathrm{x})=\operatorname{sinax}$ in $-\pi<\mathrm{x}<\pi$
(b) Find the half-range Sine series for $f(t)=t-t^{2} ; 0<t<1$.
5. (a) The table given below reveals the velocity v of a body during the time ' t ' specified. Find its acceleration at $\mathrm{t}=1.1$

t	1.0	1.1	1.2	1.3	1.4
$\mathrm{v}:$	43.1	47.7	52.1	56.4	60.8

(b) Fit a curve of the form $y=a x^{2}+b x+c$ to the data:
x: $\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllll}y: & 1.8 & 5.1 & 8.9 & 14.1 & 19.8\end{array}$
6. (a) Show that the system of equations $x+2 y+z=3,2 x+3 y+2 z=5$, $3 \mathrm{x}-5 \mathrm{y}+5 \mathrm{z}=2,3 \mathrm{x}+9 \mathrm{y}-\mathrm{z}=4$ are consistent and solve them
(b) Write the following equations in matrix form $\mathrm{AX}=\mathrm{B}$ and solve for X by finding $\mathrm{A}^{-1}: \mathrm{x}+\mathrm{y}-2 \mathrm{z}=3,2 \mathrm{x}-\mathrm{y}+\mathrm{z}=0,3 \mathrm{x}+\mathrm{y}-\mathrm{z}=8$. $\quad[8+8]$
7. (a) If the interval of differencing is unity, prove that $\Delta \frac{2^{x}}{x!}=\frac{2^{x}(1-x)}{(x+1)!}$
(b) If the interval of differencing is unity, prove that $\Delta[\mathrm{x}(\mathrm{x}+1)(\mathrm{x}+2)(\mathrm{x}+3)]$ $=4(\mathrm{x}+1)(\mathrm{x}+2)(\mathrm{x}+3)$.
8. Find the rank and index of the quadratic forms and reduce it to canonical form $\mathrm{x}_{1}{ }^{2}+2 \mathrm{x}_{2}{ }^{2}+6 \mathrm{x}_{3}{ }^{2}-2 \mathrm{x}_{1} \mathrm{z}_{1}+4 \mathrm{y}_{1} \mathrm{z}_{1}$

I B.Tech Examinations,December 2010
 MATHEMATICAL METHODS

Common to ME, BME, IT, MECT, MEP, AME, ICE, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) If ' a ' is not an integer, find the Fourier Series expansion of period 2π for the function $\mathrm{f}(\mathrm{x})=\operatorname{sinax}$ in $-\pi<\mathrm{x}<\pi$
(b) Find the half-range Sine series for $f(t)=t-t^{2} ; 0<t<1$.

$$
[8+8]
$$

2. (a) Show that the system of equations $x+2 y+z=3,2 x+3 y+2 z=5$, $3 \mathrm{x}-5 \mathrm{y}+5 \mathrm{z}=2,3 \mathrm{x}+9 \mathrm{y}-\mathrm{z}=4$ are consistent and solve them
(b) Write the following equations in matrix form $\mathrm{AX}=\mathrm{B}$ and solve for X by finding $\mathrm{A}^{-1}: \mathrm{x}+\mathrm{y}-2 \mathrm{z}=3,2 \mathrm{x}-\mathrm{y}+\mathrm{z}=0,3 \mathrm{x}+\mathrm{y}-\mathrm{z}=8 . \quad[8+8]$
3. (a) Solve $(2 z-y) p+(x+z) q=-(2 x+y)$
(b) Solve the difference equation, using Z-transform $\mathrm{x}(\mathrm{k}+2)-5 \mathrm{x}(\mathrm{k}+1)+6 \mathrm{x}(\mathrm{k})=4^{n}$, given $\mathrm{x}(0)=0, \mathrm{x}(1)=1$.
4. (a) The table given below reveals the velocity v of a body during the time ' t ' specified. Find its aeceleration at $t=1.1$
$\begin{array}{llllll}\mathrm{t}: & 1.0 & 1.1 & 1.2 & 1.3 & 1.4\end{array}$
$\begin{array}{llllll}\mathrm{v}: & 43.1 & 47.7 & 52.1 & 56.4 & 60.8\end{array}$
(b) Fit a culve of the form $y=a x^{2}+b x+c$ to the data:
x: $\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{lllllll}\mathrm{y}: & 1.8 & 5.1 & 8.9 & 14.1 & 19.8\end{array}$
5. Find the rank and index of the quadratic forms and reduce it to canonical form $x_{1}{ }^{2}+2 x_{2}{ }^{2}+6 x_{3}{ }^{2}-2 x_{1} z_{1}+4 y_{1} z_{1}$
6. Find the eigen values and the corresponding eigen vectors of the matrix
$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -3 & -3 \\ 2 & 4 & 4\end{array}\right]$
7. (a) If the interval of differencing is unity, prove that $\Delta \frac{2^{x}}{x!}=\frac{2^{x}(1-x)}{(x+1)!}$
(b) If the interval of differencing is unity, prove that $\Delta[\mathrm{x}(\mathrm{x}+1)(\mathrm{x}+2)(\mathrm{x}+3)]$ $=4(\mathrm{x}+1)(\mathrm{x}+2)(\mathrm{x}+3)$.
[8+8]
8. Solve numerically using Euler's method and Taylor's method $y^{\prime}=\left(x^{3}+x y^{2}\right) / e^{x}$ given that $y(0)=1$. Find $y(0.1), y(0.2)$ and $y(0.3)$.

I B.Tech Examinations,December 2010
 MATHEMATICAL METHODS

Common to ME, BME, IT, MECT, MEP, AME, ICE, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) The table given below reveals the velocity v of a body during the time ' t ' specified. Find its acceleration at $\mathrm{t}=1.1$

$$
\begin{array}{cccccc}
\text { t: } & 1.0 & 1.1 & 1.2 & 1.3 & 1.4 \\
\text { v: } & 43.1 & 47.7 & 52.1 & 56.4 & 60.8
\end{array}
$$

(b) Fit a curve of the form $y=a x^{2}+b x+c$ to the data:
x: $\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$
$\begin{array}{llllll}y: & 1.8 & 5.1 & 8.9 & 14.1 & 19.8\end{array}$
2. (a) Show that the system of equations $x+2 y+z=3,2 x+3 y+2 z=5$,
$3 \mathrm{x}-5 \mathrm{y}+5 \mathrm{z}=2,3 \mathrm{x}+9 \mathrm{y}-\mathrm{z}=4$ are consistent and solve them
(b) Write the following equations in matrix form $\mathrm{AX}=\mathrm{B}$ and solve for X by finding $\mathrm{A}^{-1}: \mathrm{x}+\mathrm{y}-2 \mathrm{z}=3,2 \mathrm{x}-\mathrm{y}+\mathrm{z}=0,3 \mathrm{x}+\mathrm{y}-\mathrm{z}=8 . \quad[8+8]$
3. (a) If ' a ' is not an integer, find the Fourier Series expansion of period 2π for the function $\mathrm{f}(\mathrm{x})=\sin a \mathrm{x}$ in $-\pi<\mathrm{x}<\pi$
(b) Find the half-range Sine series for $f(t)=t-t^{2} ; 0<t<1$.
4. (a) If the interval of differencing is unity, prove that $\Delta \frac{2^{x}}{x!}=\frac{2^{x}(1-x)}{(x+1)!}$
(b) If the interval of differencing is unity, prove that $\Delta[x(x+1)(x+2)(x+3)]$ $=4\left(x^{2}+1\right)(x+2)(x+3)$.
5. Find the eigen values and the corresponding eigen vectors of the matrix
$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -3 & -3 \\ 2 & 4 & 4\end{array}\right]$
6. (a) Solve $(2 z-y) p+(x+z) q=-(2 x+y)$
(b) Solve the difference equation, using Z-transform
$\mathrm{x}(\mathrm{k}+2)-5 \mathrm{x}(\mathrm{k}+1)+6 \mathrm{x}(\mathrm{k})=4^{n}$, given $\mathrm{x}(0)=0, \mathrm{x}(1)=1$.
7. Solve numerically using Euler's method and Taylor's method $y^{\prime}=\left(x^{3}+x y^{2}\right) / e^{x}$ given that $y(0)=1$. Find $y(0.1), y(0.2)$ and $y(0.3)$.
8. Find the rank and index of the quadratic forms and reduce it to canonical form $x_{1}{ }^{2}+2 x_{2}{ }^{2}+6 x_{3}{ }^{2}-2 x_{1} z_{1}+4 y_{1} z_{1}$

