R07

Max Marks: 80

I B.Tech Examinations,December 2010 NUMERICAL METHODS Aeronautical Engineering

Time: 3 hours

Code No: R07A1BS09

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Solve: $\nabla^2 u = 0$ in the square region bounded by x = 0, x = 4, y = 0, y = 4and with boundary conditions u(0, y) = 0, $u(4, y) = 8 + y^2$, $u(x, 0) = x^2$, u(x, 4) = 5x-3 by taking h = k = 1. solve by Jacobi's method.
 - (b) Solve the equation $u_{xx}+u_{yy}=0$ in the domain of following Figure 1b by Gauss-seidel's method. [8+8]

- 2. (a) Given $\sin 45^0 = 0.7071$, $\sin 50^0 = 0.7660$, $\sin 55^0 = 0.8192$ and $\sin 60^0 = 0.8660$. Find $\sin 52^0$ using Newton's interpolation formula. Estimate the error.
 - (b) Find the second difference of the polynomial $x^4 12x^3 + 42x^2 30x + 9$ with interval of differencing h=2. [12+4]

3. Show that on
$$[t_i, t_{i+1}]$$
 we have $B_i^k(x) = \frac{(x-t_i)^k}{(t_{i+1}-t_i)(t_{i+2}-t_i)\dots(t_{i+k}-t_i)}$ [16]

4. (a) Solve the system
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 13 \\ 5 \end{bmatrix}$$
 by LU decomposition method.

- (b) Solve the system. 2x-3y+z=-1 x+4y+5z=25 3x-4y+z=2 if it is consistent.
- 5. (a) Fit a parabola to the data:

Х	0.5	1	2	4	8	12
у	160	120	94	75	62	56

www.firstranker.com

[8+8]

Code No: R07A1BS09

$\mathbf{R07}$

Set No. 2

(b) Fit a straight line to the data below:

Х	19	25	30	36	40	45	50
У	76	77	79	80	82	83	85

- 6. (a) Using Euler's method find y (0.2) given $dy/dx = \log(x + y)$ and y (0) = 1, h = 0.2.
 - (b) Solve by Taylor series method $dy/dx = y + x^3$ for x = 1.1, 1.2 given y (1) = 1. [8+8]
- 7. (a) By dividing the range in to five equal parts, evaluate $\int_{0}^{x} \sin x dx$ by Trapezoidal rule and Simpson's rule.
 - (b) Evaluate $\int_{1}^{6} \frac{dx}{1-x^2}$ by trapezoidal rule and Simpson's $1/3^{rd}$ rule. [8+8]
- 8. Find the root of the equation $x^3 + x^2$ -100=0 correct to three decimal places by

- (a) Bisection method
- (b) Method of false position.

R

[8+8]

 $\mathbf{R07}$

by LU decomposition method.

I B.Tech Examinations,December 2010 NUMERICAL METHODS Aeronautical Engineering

Time: 3 hours

Code No: R07A1BS09

Max Marks: 80

[8+8]

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

1. Find the root of the equation $x^3 + x^2$ -100=0 correct to three decimal places by

13

- (a) Bisection method
- (b) Method of false position.
- 2. (a) Solve the system $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{vmatrix} \begin{vmatrix} x \\ y \\ z \end{vmatrix}$
 - (b) Solve the system. 2x-3y+z=-1 x+4y+5z=25 3x-4y+z=2if it is consistent.
- 3. (a) By dividing the range in to five equal parts, evaluate $\int_{0} \sin x dx$ by Trapezoidal rule and Simpson's rule.
 - (b) Evaluate $\int_{1}^{\infty} \frac{dx}{1-x^2}$ by trapezoidal rule and Simpson's $1/3^{rd}$ rule. [8+8]
- 4. (a) Fit a parabola to the data:

X	0.5	1	2	4	8	12
У	160	120	94	75	62	56

(b) Fit a straight line to the data below:

X	19	25	30	36	40	45	50
y	76	77	79	80	82	83	85

- 5. (a) Using Euler's method find y (0.2) given $dy/dx = \log(x + y)$ and y (0) = 1, h = 0.2.
 - (b) Solve by Taylor series method $dy/dx = y + x^3$ for x = 1.1, 1.2 given y (1) = 1. [8+8]
- 6. (a) Given $\sin 45^{\circ}=0.7071$, $\sin 50^{\circ}=0.7660$, $\sin 55^{\circ}=0.8192$ and $\sin 60^{\circ}=0.8660$. Find $\sin 52^{\circ}$ using Newton's interpolation formula. Estimate the error.
 - (b) Find the second difference of the polynomial $x^4 12x^3 + 42x^2 30x + 9$ with interval of differencing h=2. [12+4]

www.firstranker.com

Code No: R07A1BS09

R07

Set No. 4

- 7. Show that on $[t_i, t_{i+1}]$ we have $B_i^k(x) = \frac{(x-t_i)^k}{(t_{i+1}-t_i)(t_{i+2}-t_i)\dots(t_{i+k}-t_i)}$ [16]
- 8. (a) Solve: $\nabla^2 u = 0$ in the square region bounded by x = 0, x = 4, y = 0, y = 4 and with boundary conditions u(0, y) = 0, $u(4, y) = 8 + y^2$, $u(x, 0) = x^2$, u(x, 4) = 5x-3 by taking h = k = 1. solve by Jacobi's method.
 - (b) Solve the equation $u_{xx}+u_{yy}=0$ in the domain of following Figure 1b by Gauss-seidel's method. [8+8]

R07

Set No. 1

I B.Tech Examinations,December 2010 NUMERICAL METHODS Aeronautical Engineering

Time: 3 hours

Code No: R07A1BS09

Max Marks: 80

[8+8]

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Solve the system $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 13 \\ 5 \end{bmatrix}$ by LU decomposition method.

- (b) Solve the system. 2x-3y+z=-1 x+4y+5z=25 3x-4y+z=2if it is consistent.
- 2. (a) By dividing the range in to five equal parts, evaluate $\int_{0}^{0} \sin x dx$ by Trapezoidal rule and Simpson's rule.
 - (b) Evaluate $\int_{1}^{6} \frac{dx}{1-x^2}$ by trapezoidal rule and Simpson's $1/3^{rd}$ rule. [8+8]
- 3. (a) Given $\sin 45^{\circ}=0.7071$, $\sin 50^{\circ}=0.7660$, $\sin 55^{\circ}=0.8192$ and $\sin 60^{\circ}=0.8660$. Find $\sin 52^{\circ}$ using Newton's interpolation formula. Estimate the error.
 - (b) Find the second difference of the polynomial $x^4 12x^3 + 42x^2 30x + 9$ with interval of differencing h=2. [12+4]
- 4. Show that on $[t_i, t_{i+1}]$ we have $B_i^k(x) = \frac{(x-t_i)^k}{(t_{i+1}-t_i)(t_{i+2}-t_i)\dots(t_{i+k}-t_i)}$ [16]
- 5. Find the root of the equation $x^3 + x^2$ -100=0 correct to three decimal places by
 - (a) Bisection method
 - (b) Method of false position.
- (a) Solve: ∇²u = 0 in the square region bounded by x = 0, x = 4, y = 0, y = 4 and with boundary conditions u (0, y) = 0, u (4, y) = 8 + y², u (x, 0) = x², u (x, 4) = 5x-3 by taking h = k = 1. solve by Jacobi's method.
 - (b) Solve the equation $u_{xx}+u_{yy}=0$ in the domain of following Figure 1b by Gauss-seidel's method. [8+8]

www.firstranker.com

R07

Max Marks: 80

I B.Tech Examinations,December 2010 NUMERICAL METHODS Aeronautical Engineering

Time: 3 hours

Code No: R07A1BS09

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Solve: $\nabla^2 u = 0$ in the square region bounded by x = 0, x = 4, y = 0, y = 4and with boundary conditions u(0, y) = 0, $u(4, y) = 8 + y^2$, $u(x, 0) = x^2$, u(x, 4) = 5x-3 by taking h = k = 1. solve by Jacobi's method.
 - (b) Solve the equation $u_{xx}+u_{yy}=0$ in the domain of following Figure 1b by Gauss-seidel's method. [8+8]

2. (a) Fit a parabola to the data:

Х	0.5	1	2	4	8	12
У	160	120	94	75	62	56

(b) Fit a straight line to the data below:

Х	19	25	30	36	40	45	50
У	76	77	79	80	82	83	85

- 3. (a) Solve the system $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ 13 \\ 5 \end{bmatrix}$ by LU decomposition method.
 - (b) Solve the system. 2x-3y+z=-1 x+4y+5z=25 3x-4y+z=2if it is consistent.

[8+8]

4. (a) Using Euler's method find y (0.2) given $dy/dx = \log(x + y)$ and y (0) = 1, h = 0.2.

www.firstranker.com

www.firstranker.com

Code No: R07A1BS09

Set No. 3

- (b) Solve by Taylor series method $dy/dx = y + x^3$ for x = 1.1, 1.2 given y (1) = 1. [8+8]
- 5. (a) By dividing the range in to five equal parts, evaluate $\int_{0}^{n} \sin x dx$ by Trapezoidal rule and Simpson's rule.
 - (b) Evaluate $\int_{1}^{0} \frac{dx}{1-x^2}$ by trapezoidal rule and Simpson's $1/3^{rd}$ rule. [8+8]
- 6. (a) Given $\sin 45^{\circ}=0.7071$, $\sin 50^{\circ}=0.7660$, $\sin 55^{\circ}=0.8192$ and $\sin 60^{\circ}=0.8660$. Find $\sin 52^{\circ}$ using Newton's interpolation formula. Estimate the error.
 - (b) Find the second difference of the polynomial $x^4 12x^3 + 42x^2 \cdot 30x + 9$ with interval of differencing h=2. [12+4]
- 7. Find the root of the equation $x^3 + x^2$ -100=0 correct to three decimal places by
 - (a) Bisection method

R

- (b) Method of false position. [8+8]
- 8. Show that on $[t_i, t_{i+1}]$ we have $B_i^k(x) = \frac{(x-t_i)^k}{(t_{i+1}-t_i)(t_{i+2}-t_i)\dots(t_{i+k}-t_i)}$ [16]