I B.Tech Examinations,December 2010 NUMERICAL METHODS
 Aeronautical Engineering

Max Marks: 80
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Solve: $\nabla^{2} u=0$ in the square region bounded by $x=0, x=4, y=0, y=4$ and with boundary conditions $\mathrm{u}(0, \mathrm{y})=0, \mathrm{u}(4, \mathrm{y})=8+y^{2}, \mathrm{u}(\mathrm{x}, 0)=x^{2}$, $\mathrm{u}(\mathrm{x}, 4)=5 \mathrm{x}-3$ by taking $\mathrm{h}=\mathrm{k}=1$. solve by Jacobi's method.
(b) Solve the equation $u_{x x}+u_{y y}=0$ in the domain of following Figtre 1 b by Gaussseidel's method.

Figure 1b
2. (a) Given $\sin 45^{\circ}=0.7071, \sin 50^{\circ}=0.7660, \sin 55^{\circ}=0.8192$ and $\sin 60^{\circ}=0.8660$. Find $\sin 52^{\circ}$ using Newton's interpolation formula. Estimate the error.
(b) Find the second difference of the polynomial $x^{4}-12 x^{3}+42 x^{2}-30 \mathrm{x}+9$ with interval of differencing $h=2$.
3. Show that on $\left[t_{i}, t_{i+1}\right]$ we have $B_{i}^{k}(x)=\frac{\left(x-t_{i}\right)^{k}}{\left(t_{i+1}-t_{i}\right)\left(t_{i+2}-t_{i}\right) \ldots\left(t_{i+k}-t_{i}\right)}$
4. (a) Solve the system $\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}8 \\ 13 \\ 5\end{array}\right]$ by LU decomposition method.
(b) Solve the system.
$2 x-3 y+z=-1$
$x+4 y+5 z=25$
$3 x-4 y+z=2$
if it is consistent.
5. (a) Fit a parabola to the data:

x	0.5	1	2	4	8	12
y	160	120	94	75	62	56

(b) Fit a straight line to the data below:

x	19	25	30	36	40	45	50
y	76	77	79	80	82	83	85

6. (a) Using Euler's method find $y(0.2)$ given $d y / d x=\log (x+y)$ and $y(0)=1, h$ $=0.2$.
(b) Solve by Taylor series method $\mathrm{dy} / \mathrm{dx}=\mathrm{y}+x^{3}$ for $\mathrm{x}=1.1,1.2$ given $\mathrm{y}(1)=$ 1.
7. (a) By dividing the range in to five equal parts, evaluate $\int_{0}^{\pi} \sin x d x$ by Trapezoidal rule and Simpson's rule.
(b) Evaluate $\int_{1}^{6} \frac{d x}{1-x^{2}}$ by trapezoidal rule and Simpson's $1 / 3^{\text {rd }}$ rule. $[8+8]$
8. Find the root of the equation $x^{3}+x^{2}-100=0$ correct to three decimal places by
(a) Bisection method
(b) Method of false position.

I B.Tech Examinations,December 2010
 NUMERICAL METHODS
 Aeronautical Engineering

Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Find the root of the equation $x^{3}+x^{2}-100=0$ correct to three decimal places by
(a) Bisection method
(b) Method of false position.

$$
[8+8]
$$

2. (a) Solve the system $\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}8 \\ 13 \\ 5\end{array}\right]$ by RU decomposition method.
(b) Solve the system.
$2 x-3 y+z=-1$
$x+4 y+5 z=25$
$3 x-4 y+z=2$
if it is consistent.
3. (a) By dividing the range in to five equal parts, evaluate $\int_{0}^{\pi} \sin x d x$ by Trapezoidal rule and Simpsons ful
(b) Evaluate $\int_{1}^{6} \frac{d x}{1-x^{2}}$ by trapezoidal rule and Simpson's $1 / 3^{\text {rd }}$ rule. $\quad[8+8]$
4. (a) Fit a parabola to the data:

x	0.5	1	2	4	8	12
y	160	120	94	75	62	56

(b) Fit a straight line to the data below:

x	19	25	30	36	40	45	50
y	76	77	79	80	82	83	85

5. (a) Using Euler's method find $y(0.2)$ given $d y / d x=\log (x+y)$ and $y(0)=1, h$ $=0.2$.
(b) Solve by Taylor series method $\mathrm{dy} / \mathrm{dx}=\mathrm{y}+x^{3}$ for $\mathrm{x}=1.1,1.2$ given $\mathrm{y}(1)=$ 1.
6. (a) Given $\sin 45^{\circ}=0.7071, \sin 50^{0}=0.7660, \sin 55^{\circ}=0.8192$ and $\sin 60^{\circ}=0.8660$. Find $\sin 52^{0}$ using Newton's interpolation formula. Estimate the error.
(b) Find the second difference of the polynomial $x^{4}-12 x^{3}+42 x^{2}-30 \mathrm{x}+9$ with interval of differencing $\mathrm{h}=2$.
$[12+4]$
7. Show that on $\left[t_{i}, t_{i+1}\right]$ we have $B_{i}^{k}(x)=\frac{\left(x-t_{i}\right)^{k}}{\left(t_{i+1}-t_{i}\right)\left(t_{i+2}-t_{i}\right) \ldots\left(t_{i+k}-t_{i}\right)}$
8. (a) Solve: $\nabla^{2} u=0$ in the square region bounded by $x=0, x=4, y=0, y=4$ and with boundary conditions $\mathrm{u}(0, \mathrm{y})=0, \mathrm{u}(4, \mathrm{y})=8+y^{2}, \mathrm{u}(\mathrm{x}, 0)=x^{2}$, $\mathrm{u}(\mathrm{x}, 4)=5 \mathrm{x}-3$ by taking $\mathrm{h}=\mathrm{k}=1$. solve by Jacobi's method.
(b) Solve the equation $u_{x x}+u_{y y}=0$ in the domain of following Figure 1 b by Gaussseidel's method.
[8+8]

Figure 1 b

I B.Tech Examinations,December 2010 NUMERICAL METHODS
 Aeronautical Engineering

Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Solve the system $\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}8 \\ 13 \\ 5\end{array}\right]$ by LU decomposition method.
(b) Solve the system.
$2 x-3 y+z=-1$
$x+4 y+5 z=25$
$3 x-4 y+z=2$
if it is consistent.

$$
[8+8]
$$

2. (a) By dividing the range in to five equal parts, evaluate $\int_{0}^{\pi} \sin x d x$ by Trapezoidal rule and Simpson's rule.
(b) Evaluate $\int_{1}^{6} \frac{d x}{1-x^{2}}$ by trapezoidal rule and Simpson's $1 / 3^{\text {rd }}$ rule. $[8+8]$
3. (a) Given $\sin 45^{\circ}=0.7071, \sin 50^{\circ}=0.7660, \sin 55^{\circ}=0.8192$ and $\sin 60^{\circ}=0.8660$. Find $\sin 52^{0}$ using Newton's interpolation formula. Estimate the error.
(b) Find the second difference of the polynomial $x^{4}-12 x^{3}+42 x^{2}-30 \mathrm{x}+9$ with interval of differencing $h=2$.
$[12+4]$
4. Show that on $\left[t_{i}, t_{i+1}\right]$ we have $B_{i}^{k}(x)=\frac{\left(x-t_{i}\right)^{k}}{\left(t_{i+1}-t_{i}\right)\left(t_{i+2}-t_{i}\right) \ldots\left(t_{i+k}-t_{i}\right)}$
5. Find the root of the equation $x^{3}+x^{2}-100=0$ correct to three decimal places by
(a) Bisection method
(b) Method of false position.
6. (a) Solve: $\nabla^{2} u=0$ in the square region bounded by $x=0, x=4, y=0, y=4$ and with boundary conditions $\mathrm{u}(0, \mathrm{y})=0, \mathrm{u}(4, \mathrm{y})=8+y^{2}, \mathrm{u}(\mathrm{x}, 0)=x^{2}$, $\mathrm{u}(\mathrm{x}, 4)=5 \mathrm{x}-3$ by taking $\mathrm{h}=\mathrm{k}=1$. solve by Jacobi's method.
(b) Solve the equation $u_{x x}+u_{y y}=0$ in the domain of following Figure 1 b by Gaussseidel's method.

0	50	100	50	0
	u_{1}	u_{2}	u_{3}	
100	u_{4}	u_{5}	u_{6}	100
200	u_{7}	u_{8}	u_{9}	200
100				100
	50	100	50	

Figure 1b
7. (a) Fit a parabola to the data:

x	0.5	1	2	4	8	12
y	160	120	94	75	62	56

(b) Fit a straight line to the data below:

x	19	25	30	36	40	45	50
y	76	77	79	80	82	83	85
$[8+8]$							

8. (a) Using Euler's method find y (0.2) given $d y / d x=\log (x+y)$ and $y(0)=1, h$ $=0.2$.
(b) Solve by Taylor seriés method $\mathrm{dy} / \mathrm{dx}=\mathrm{y}+x^{3}$ for $\mathrm{x}=1.1,1.2$ given $\mathrm{y}(1)=$ 1.

I B.Tech Examinations,December 2010 NUMERICAL METHODS
Aeronautical Engineering
Max Marks: 80
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Solve: $\nabla^{2} u=0$ in the square region bounded by $x=0, x=4, y=0, y=4$ and with boundary conditions $\mathrm{u}(0, \mathrm{y})=0, \mathrm{u}(4, \mathrm{y})=8+y^{2}, \mathrm{u}(\mathrm{x}, 0)=x^{2}$, $\mathrm{u}(\mathrm{x}, 4)=5 \mathrm{x}-3$ by taking $\mathrm{h}=\mathrm{k}=1$. solve by Jacobi's method.
(b) Solve the equation $u_{x x}+u_{y y}=0$ in the domain of following Figure 1 b by Gaussseidel's method.

Figure 1b
2. (a) Fit a parabola to the data:

x	0.5	1	2	4	8	12
y	160	120	94	75	62	56

(b) Fit a straight line to the data below:

x	19	25	30	36	40	45	50
y	76	77	79	80	82	83	85

3. (a) Solve the system $\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}8 \\ 13 \\ 5\end{array}\right]$ by LU decomposition method.
(b) Solve the system.
$2 x-3 y+z=-1$
$x+4 y+5 z=25$
$3 x-4 y+z=2$
if it is consistent.
4. (a) Using Euler's method find $y(0.2)$ given $d y / d x=\log (x+y)$ and $y(0)=1, h$ $=0.2$.
(b) Solve by Taylor series method $\mathrm{dy} / \mathrm{dx}=\mathrm{y}+x^{3}$ for $\mathrm{x}=1.1,1.2$ given $\mathrm{y}(1)=$ 1.
5. (a) By dividing the range in to five equal parts, evaluate $\int_{0}^{\pi} \sin x d x$ by Trapezoidal rule and Simpson's rule.
(b) Evaluate $\int_{1}^{6} \frac{d x}{1-x^{2}}$ by trapezoidal rule and Simpson's $1 / 3^{\text {rd }}$ rule. $[8+8]$
6. (a) Given $\sin 45^{\circ}=0.7071, \sin 50^{\circ}=0.7660, \sin 55^{\circ}=0.8192$ and $\sin 60^{\circ}=0.8660$.Find $\sin 52^{0}$ using Newton's interpolation formula. Estimate the error.
(b) Find the second difference of the polynomial $x^{4}-12 x^{3}+42 x^{2}-30 x+9$ with interval of differencing $\mathrm{h}=2$.
7. Find the root of the equation $x^{3}+x^{2}-100=0$ correct to three decimal places by
(a) Bisection method
(b) Method of false position.
8. Show that on $\left[t_{i}, t_{i+1}\right]$ we have $B_{i}^{k}(x)=\frac{\left(x-t_{i}\right)^{k}}{\left(t_{i+1}-t_{i}\right)\left(t_{i+2}-t_{i}\right) \ldots\left(t_{i+k}-t_{i}\right)}$
