$$
\begin{aligned}
& \text { Answer any FIVE Questions } \\
& \text { All Questions carry equal marks }
\end{aligned}
$$

1. Define average value and obtain the same for a half wave rectified voltage wave.
2. Determine the Z parameters of the network shown in figure 2 .

Figure 2
3. State and Explain with proof of Reciprocity Theorem.
4. A prototype HPF has cut-off frequency 6 KHz and design impedance 300 Ohms . Calculate L \& C?
5. (a) Define half power frequency. Draw a sketch and explain.
(b) Derive the formula for half power frequencies.
6. For the figure 6 shown, calculate the equivalent resistance of the following combination of resistors and also calculate the source current, total power dissipated.
7. For the network shown in figure 7, draw the oriented graph, select a tree and obtain a tie-set matrix. Write down the KVL equations from the tie-set matrix.

Figure 7

Set No. 2

Figure 6:
8. Derive the step voltage response equation for a series RLC circuit.

I B.Tech Examinations,December 2010 NETWORK ANALYSIS

Common to BME, E.COMP.E, ETM, E.CONT.E, EIE, ECE
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. State and Explain with proof of Reciprocity Theorem.
2. For the figure 2 shown, calculate the equivalent resistance of the following combination of resistors and also calculate the source current, total power dissipated.

Figure 2:
3. (a) Define half power frequency. Draw a sketch and explain.
(b) Derive the formula for half power frequencies.
4. Define average value and obtain the same for a half wave rectified voltage wave.
5. For the network shown in figure 5, draw the oriented graph, select a tree and obtain a tie-set matrix. Write down the KVL equations from the tie-set matrix.

Figure 5
6. A prototype HPF has cut-off frequency 6 KHz and design impedance 300 Ohms. Calculate L \& C?
7. Determine the Z parameters of the network shown in figure 7 .

Figure 7
8. Derive the step voltage response equation for a series RLC circuit.

I B. Tech Examinations,December 2010
NETWORK ANALYSIS
Common to BME, E.COMP.E, ETM, E.CONT.E, EIE, ECE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. Define average value and obtain the same for a half wave rectified voltage wave.
[16]
2. A prototype HPF has cut-off frequency 6 KHz and design impedance 300 Ohms . Calculate L \& C?
3. For the figure 3 shown, calculate the equivalent resistance of the following combination of resistors and also calculate the source current, total power dissipated.

Figure 3:
4. Determine the Z parameters of the network shown in figure 4 .
[16]

Figure 4
5. Derive the step voltage response equation for a series RLC circuit.
6. (a) Define half power frequency. Draw a sketch and explain.
(b) Derive the formula for half power frequencies.
[6+10]
7. For the network shown in figure 7, draw the oriented graph, select a tree and obtain a tie-set matrix. Write down the KVL equations from the tie-set matrix.

Figure 7
8. State and Explain with proof of Reciprocity Theorem.

I B.Tech Examinations,December 2010 NETWORK ANALYSIS

Common to BME, E.COMP.E, ETM, E.CONT.E, EIE, ECE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. Define average value and obtain the same for a half wave rectified voltage wave.
2. State and Explain with proof of Reciprocity Theorem.
3. For the figure 3 shown, calculate the equivalent resistance of the following combination of resistors and also calculate the source current, total power dissipated.
[16]

Figure 3:
4. A prototype HPF has cut-off frequency 6 KHz and design impedance 300 Ohms. Calculate L \& C?
5. For the network shown in figure 5, draw the oriented graph, select a tree and obtain a tie-set matrix. Write down the KVL equations from the tie-set matrix.

Figure 5
6. (a) Define half power frequency. Draw a sketch and explain.
(b) Derive the formula for half power frequencies.
7. Derive the step voltage response equation for a series RLC circuit.
8. Determine the Z parameters of the network shown in figure 8 .

Figure 8

