\mathbf{RR}

Set No. 2

I B.Tech Examinations, December 2010 MATHEMATICS - I Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks ***** 1. (a) Prove that $\operatorname{curl}(\mathbf{A} \times \mathbf{B}) = \operatorname{Adiv} \mathbf{B} - \operatorname{Bdiv} \mathbf{A} + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}$. (b) Find the directional derivative of $\phi(x,y,z) = x^2yz + 4xz^2$ at the point (1, -2, -2, -2)-1) in the direction of the normal to the surface $f(x,y,z) = x \log z - y^2$ at (-1, [8+8]2,-1).(a) Test the convergence of the series $\frac{\sqrt{2}-1}{3^2-1} + \frac{\sqrt{3}-1}{4^2-1} + \frac{\sqrt{4}-1}{5^2-1} + \frac{\sqrt{4}-1}{$ [5]2. (b) Test whether the following series converges absolutely or conditionally. 1.²/₃ - ¹/₂.³/₄ + ¹/₃.⁴/₅ - ^{1.5}/_{4.6} +
(c) Verify Rolle's theorem for f(x) = x (x+3) e^{-x/2} in [-3, 0] $\left[5\right]$ [6]3. (a) If $u = \sin^{-1} \left[\frac{x^{1/3} + y^{1/3}}{\sqrt{x} + \sqrt{y}} \right]^{1/2}$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{12} \tan u$ and $x^2 \frac{\partial^{2u}}{\partial x^2} + 2xy \frac{\partial^{2u}}{\partial x \partial y} + y^2 \frac{\partial^{2u}}{\partial y^2} = \frac{\tan u}{144} (13 + \tan^2 u)$ (b) Find the evolute of the curve $x = a \cos^3 \theta$, $y = a \sin^3 \theta$. [8+8]4. (a) Form the differential equation by eliminating the arbitrary constant x $\tan(y/x) = c$. (b) Solve the differential equation: $\frac{dy}{dx} + y \cos x = y^3 \sin 2x$. [3] [7](c) Find the orthogonal trajectories of the family of circles $x^2 + y^2 = ax$. [6]5. (a) Trace the curve : $x^4 + y^4 = 2a^2 xy$. (b) Find the surface area got by rotating one loop of the curve $r^2 = a^2 \cos 2\theta$ about the initial line. [8+8](a) Solve the differential equation: $(D^2 + 1)y = \sin x \sin 2x$. 6. (b) Solve the differential equation: $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$ [8+8]7. Verify divergence theorem for $F = 4xzi - y^2 j + yzk$, where S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1. [16]8. (a) Find $L\left[\frac{\sin^2 t}{t}\right]$ $\left[5\right]$ (b) Find $L^{-1}\left[\frac{s+2}{s^2-4s+13}\right]$ [6](c) Evaluate the triple integral $\int_{0}^{\pi/2} \int_{0}^{a \sin \theta} \int_{1}^{\frac{a^2 - r^2}{a}} r \, dz \, dr \, d\theta$ $\left[5\right]$ **** 1

 \mathbf{RR}

I B.Tech Examinations, December 2010

Set No. 4

MATHEMATICS - I Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks ***** 1. (a) If $u = \sin^{-1} \left[\frac{x^{1/3} + y^{1/3}}{\sqrt{x} + \sqrt{y}} \right]^{1/2}$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{12} \tan u$ and $x^2 \frac{\partial^{2u}}{\partial x^2} + 2xy \frac{\partial^{2u}}{\partial x \partial y} + y^2 \frac{\partial^{2u}}{\partial y^2} = \frac{\tan u}{144} (13 + \tan^2 u)$ (b) Find the evolute of the curve $x = a \cos^3 \theta$, $y = a \sin^3 \theta$. 8+8 2. (a) Test the convergence of the series $\frac{\sqrt{2}-1}{3^2-1} + \frac{\sqrt{3}-1}{4^2-1} + \frac{\sqrt{4}-1}{5^2-1} + \frac{\sqrt{4} \left[5\right]$ (b) Test whether the following series converges absolutely or conditionally. (b) Test whether the term $1.\frac{2}{3} - \frac{1}{2}.\frac{3}{4} + \frac{1}{3}.\frac{4}{5} - \frac{1.5}{4.6} + \dots$ (c) Verify Rolle's theorem for $f(x) = x (x+3) e^{-x/2}$ in [-3, 0] $\left[5\right]$ [6](a) Trace the curve : $x^4 + y^4 = 2a^2 xy$. 3. (b) Find the surface area got by rotating one loop of the curve $r^2 = a^2 \cos 2\theta$ about the initial line. [8+8](a) Solve the differential equation: $(D^2 + 1)y = \sin x \sin 2x$. 4. (b) Solve the differential equation: $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$ |8+8|(a) Form the differential equation by eliminating the arbitrary constant 5. $x \tan(y/x) = c.$ [3] (b) Solve the differential equation: $\frac{dy}{dx} + y \cos x = y^3 \sin 2x$. [7](c) Find the orthogonal trajectories of the family of circles $x^2 + y^2 = ax$. [6]6. Verify divergence theorem for $F = 4xzi - y^2 j + yzk$, where S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1. [16]7. (a) Prove that $\operatorname{curl}(\mathbf{A} \times \mathbf{B}) = \mathbf{A} \operatorname{div} \mathbf{B} - \mathbf{B} \operatorname{div} \mathbf{A} + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}$. (b) Find the directional derivative of $\phi(x,y,z) = x^2yz + 4xz^2$ at the point (1, -2, -2)-1) in the direction of the normal to the surface $f(x,y,z) = x \log z - y^2$ at (-1, 2,-1).[8+8]8. (a) Find $L\left[\frac{\sin^2 t}{t}\right]$ $\left|5\right|$ (b) Find $L^{-1}\left[\frac{s+2}{s^2-4s+13}\right]$ [6] (c) Evaluate the triple integral $\int_{0}^{\pi/2} \int_{0}^{a \sin \theta} \int_{1}^{\frac{a^2 - r^2}{a}} r \, dz dr d\theta$ $\left[5\right]$ ****

2

 \mathbf{RR}

Set No. 1

[3]

I B.Tech Examinations, December 2010 MATHEMATICS - I Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80 Answer any FIVE Questions

All Questions carry equal marks

(a) Solve the differential equation: $(D^2 + 1)y = \sin x \sin 2x$. 1.

(b) Solve the differential equation:
$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$$
 [8+8]

2. (a) If $u = \sin^{-1} \left[\frac{x^{1/3} + y^{1/3}}{\sqrt{x} + \sqrt{y}} \right]^{1/2}$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{12} \tan u$ and $x^2 \frac{\partial^{2u}}{\partial x^2} + 2xy \frac{\partial^{2u}}{\partial x \partial y} + y^2 \frac{\partial^{2u}}{\partial y^2} = \frac{\tan u}{144} (13 + \tan^2 u)$ (b) Find the evolute of the curve $x = a \cos^3 \theta$, $y = a \sin^3 \theta$.

[8+8]

3. Verify divergence theorem for $F = 4xzi - y^2j + yzk$, where S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1. [16]

4. (a) Find
$$L\left[\frac{\sin^2 t}{t}\right]$$
 [5]

(b) Find
$$L^{-1}\left[\frac{s+2}{s^2-4s+13}\right]$$
 [6

(c) Evaluate the triple integral
$$\int_{0}^{\pi/2} \int_{0}^{a \sin \theta} \int_{1}^{a} r \, dz \, dr \, d\theta$$
 [5]

5. (a) Prove that
$$\operatorname{curl}(\mathbf{A} \times \mathbf{B}) = \operatorname{\mathbf{A}div} \mathbf{B} - \operatorname{\mathbf{B}div} \mathbf{A} + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}$$
.

- (b) Find the directional derivative of $\phi(x,y,z) = x^2yz + 4xz^2$ at the point (1, -2, -2)-1) in the direction of the normal to the surface $f(x,y,z) = x \log z - y^2$ at (-1, 2,-1).[8+8]
- 6. (a) Test the convergence of the series $\frac{\sqrt{2}-1}{3^2-1} + \frac{\sqrt{3}-1}{4^2-1} + \frac{\sqrt{4}-1}{5^2-1} + \dots$ $\left[5\right]$ (b) Test whether the following series converges absolutely or conditionally.
 - $1 \cdot \frac{2}{3} \frac{1}{2} \cdot \frac{3}{4} + \frac{1}{3} \cdot \frac{4}{5} \frac{1 \cdot 5}{4 \cdot 6} + \dots$ $\left[5\right]$
 - (c) Verify Rolle's theorem for $f(x) = x (x+3) e^{-x/2}$ in [-3, 0] [6]

7. (a) Trace the curve :
$$x^4 + y^4 = 2a^2 xy$$
.

- (b) Find the surface area got by rotating one loop of the curve $r^2 = a^2 \cos 2\theta$ about the initial line. [8+8]
- (a) Form the differential equation by eliminating the arbitrary constant 8. $x \tan(y/x) = c.$
 - (b) Solve the differential equation: $\frac{dy}{dx} + y \cos x = y^3 \sin 2x$. [7]
 - (c) Find the orthogonal trajectories of the family of circles $x^2 + y^2 = ax$. [6]

 \mathbf{RR}

Set No. 3

I B.Tech Examinations,December 2010 MATHEMATICS - I Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80 Answer any FIVE Questions

All Questions carry equal marks

1. (a) Test the convergence of the series $\frac{\sqrt{2}-1}{3^2-1} + \frac{\sqrt{3}-1}{4^2-1} + \frac{\sqrt{4}-1}{5^2-1} + \dots$ $\left[5\right]$ (b) Test whether the following series converges absolutely or conditionally $1.\frac{2}{3} - \frac{1}{2}.\frac{3}{4} + \frac{1}{3}.\frac{4}{5} - \frac{1.5}{46} + \dots$ $\left[5\right]$ (c) Verify Rolle's theorem for $f(x) = x (x+3) e^{-x/2}$ in [-3, 0][6](a) Trace the curve : $x^4 + y^4 = 2a^2 xy$. 2. (b) Find the surface area got by rotating one loop of the curve $r^2 = a^2 \cos 2\theta$ about the initial line. [8+8]3. Verify divergence theorem for $F = 4xzi - y^2 j + yzk$, where S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1. [16] (a) Prove that $\operatorname{curl}(\mathbf{A} \times \mathbf{B}) = \mathbf{A} \operatorname{div} \mathbf{B} - \mathbf{B} \operatorname{div} \mathbf{A} + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}$. 4. (b) Find the directional derivative of ϕ (x,y,z) = x²yz + 4xz² at the point (1, -2, -1) in the direction of the normal to the surface $f(x,y,z) = x \log z - y^2$ at (-1, [8+8]2,-1).(a) Solve the differential equation: $(D^2 + 1)y = \sin x \sin 2x$. 5.(b) Solve the differential equation: $x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$ [8+8](a) Form the differential equation by eliminating the arbitrary constant 6. $x \tan(y/x) = c.$ [3] (b) Solve the differential equation: $\frac{dy}{dx} + y \cos x = y^3 \sin 2x$. [7](c) Find the orthogonal trajectories of the family of circles $x^2 + y^2 = ax$. [6]7. (a) Find $L \left| \frac{\sin^2 t}{t} \right|$ $\left[5\right]$ (b) Find $L^{-1}\left[\frac{s+2}{s^2-4s+13}\right]$ [6](c) Evaluate the triple integral $\int_{0}^{\pi/2} \int_{0}^{a \sin \theta} \int_{0}^{\frac{a^2 - r^2}{a}} r \, dz \, dr \, d\theta$ $\left[5\right]$ (a) If $u = \sin^{-1} \left[\frac{x^{1/3} + y^{1/3}}{\sqrt{x} + \sqrt{y}} \right]^{1/2}$ show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = -\frac{1}{12} \tan u$ and $x^2 \frac{\partial^{2u}}{\partial x^2} + 2xy \frac{\partial^{2u}}{\partial x \partial y} + y^2 \frac{\partial^{2u}}{\partial y^2} = \frac{\tan u}{144} (13 + \tan^2 u)$ 8. (b) Find the evolute of the curve $x = a \cos^3 \theta$, $y = a \sin^3 \theta$. [8+8]