Answer any FIVE Questions All Questions carry equal marks

1. (a) Prove that $\operatorname{curl}(\mathbf{A} \times \mathbf{B})=\mathbf{A} \operatorname{div} \mathbf{B}-\mathbf{B} \operatorname{div} \mathbf{A}+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B}$.
(b) Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at the point (1, -2 , $-1)$ in the direction of the normal to the surface $f(x, y, z)=x \log z y^{2}$ at $(-1$, $2,-1)$.
2. (a) Test the convergence of the series $\frac{\sqrt{2}-1}{3^{2}-1}+\frac{\sqrt{3}-1}{4^{2}-1}+\frac{\sqrt{4}-1}{5^{2}-1}+$
(b) Test whether the following series converges absolutely or cenditionally.
$1 . \frac{2}{3}-\frac{1}{2} \cdot \frac{3}{4}+\frac{1}{3} \cdot \frac{4}{5}-\frac{1.5}{4.6}+\ldots .$.
(c) Verify Rolle's theorem for $f(x)=x(x+3) e^{-x / 2}$ in $[-3,0]$
3. (a) If $\mathrm{u}=\sin ^{-1}\left[\frac{x^{1 / 3}+y^{1 / 3}}{\sqrt{x}+\sqrt{y}}\right]^{1 / 2}$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-\frac{1}{12} \tan u$ and $x^{2} \frac{\partial^{2 u}}{\partial x^{2}}+2 x y \frac{\partial^{2 u}}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{\tan u}{144}\left(13+\tan ^{2} u\right)$
(b) Find the evolute of the curve $\mathrm{x}=\mathrm{a} \cos ^{3} \theta, \mathrm{y}=\mathrm{a} \sin ^{3} \theta$.
4. (a) Form the differential equation by eliminating the arbitrary constant $x \tan (y / x)$
(b) Solve the differential equation: $\frac{d y}{d x}+\mathrm{y} \cos x=\mathrm{y}^{3} \sin 2 x$.
(c) Find the orthogonal trajectories of the family of circles $x^{2}+y^{2}=a x$.
5. (a) Trace the curve : $x^{4}+y^{4}=2 a^{2} x y$.
(b) Find the surface area got by rotating one loop of the curve $r^{2}=a^{2} \cos 2 \theta$ about the initial line.
6. (a) Solve the differential equation: $\left(D^{2}+1\right) y=\sin x \sin 2 \mathrm{x}$.
(b) Solve the differential equation: $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{4}$
7. Verify divergence theorem for $F=4 x z i-y^{2} j+y z k$, where S is the surface of the cube bounded by $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0$ and $\mathrm{z}=1$.
8. (a) Find $L\left[\frac{\sin ^{2} t}{t}\right]$
(b) Find $L^{-1}\left[\frac{s+2}{s^{2}-4 s+13}\right]$
(c) Evaluate the triple integral $\int_{0}^{\pi / 2} \int_{0}^{a \sin } \int_{1}^{\frac{a^{2}-r^{2}}{a}} r d z d r d \theta$
```
*****
```


I B.Tech Examinations,December 2010
 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) If $\mathrm{u}=\sin ^{-1}\left[\frac{x^{1 / 3}+y^{1 / 3}}{\sqrt{x}+\sqrt{y}}\right]^{1 / 2}$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-\frac{1}{12} \tan u$ and $x^{2} \frac{\partial^{2 u}}{\partial x^{2}}+2 x y \frac{\partial^{2 u}}{\partial x \partial y}+y^{2} \frac{\partial^{2 u}}{\partial y^{2}}=\frac{\tan u}{144}\left(13+\tan ^{2} u\right)$
(b) Find the evolute of the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$.
2. (a) Test the convergence of the series $\frac{\sqrt{2}-1}{3^{2}-1}+\frac{\sqrt{3}-1}{4^{2}-1}+\frac{\sqrt{4}-1}{5^{2}-1}+$
(b) Test whether the following series converges absolutely or conditionally. $1 . \frac{2}{3}-\frac{1}{2} \cdot \frac{3}{4}+\frac{1}{3} \cdot \frac{4}{5}-\frac{1.5}{4.6}+\ldots .$.
(c) Verify Rolle's theorem for $f(x)=x(x+3)\left(e^{-x / 2}\right.$ in $[-3,0]$
3. (a) Trace the curve : $x^{4}+y^{4}=2 \Phi^{2}$ xy.
(b) Find the surface area got by rotating one loop of the curve $r^{2}=a^{2} \cos 2 \theta$ about the initial line.
4. (a) Solve the differential equation: $\left(D^{2}+1\right) y=\sin \mathrm{x} \sin 2 \mathrm{x}$.
(b) Solve the differential equation: $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{4}$
5. (a) Form the differential equation by eliminating the arbitrary constant $x \tan (y / x)=c$.
(b) Solve the differential equation: $\frac{d y}{d x}+\mathrm{y} \cos x=\mathrm{y}^{3} \sin 2 x$.
(c) Find the orthogonal trajectories of the family of circles $x^{2}+y^{2}=a x$.
6. Verify divergence theorem for $\mathrm{F}=4 \mathrm{xzi}-\mathrm{y}^{2} \mathrm{j}+\mathrm{yzk}$, where S is the surface of the cube bounded by $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0$ and $\mathrm{z}=1$.
7. (a) Prove that $\operatorname{curl}(\mathbf{A} \times \mathbf{B})=\mathbf{A} \operatorname{div} \mathbf{B}-\mathbf{B} \operatorname{div} \mathbf{A}+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B}$.
(b) Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at the point $(1,-2$, $-1)$ in the direction of the normal to the surface $f(x, y, z)=x \log z-y^{2}$ at $(-1$, $2,-1)$.
8. (a) Find $L\left[\frac{\sin ^{2} t}{t}\right]$
(b) Find $L^{-1}\left[\frac{s+2}{s^{2}-4 s+13}\right]$
(c) Evaluate the triple integral $\int_{0}^{\pi / 2} \int_{0}^{a \sin } \int_{1}^{\theta \frac{a^{2}-r^{2}}{a}} r d z d r d \theta$

I B.Tech Examinations,December 2010
 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Solve the differential equation: $\left(D^{2}+1\right) y=\sin x \sin 2 \mathrm{x}$.
(b) Solve the differential equation: $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{4}$
2. (a) If $\mathrm{u}=\sin ^{-1} \quad\left[\frac{x^{1 / 3}+y^{1 / 3}}{\sqrt{x}+\sqrt{y}}\right]^{1 / 2}$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-\frac{1}{12} \tan u$ and $x^{2} \frac{\partial^{2 u}}{\partial x^{2}}+2 x y \frac{\partial^{2 u}}{\partial x \partial y}+y^{2} \frac{\partial^{2 u}}{\partial y^{2}}=\frac{\tan u}{144}\left(13+\tan ^{2} u\right)$
(b) Find the evolute of the curve $\mathrm{x}=\mathrm{a} \cos ^{3} \theta, \mathrm{y}=\mathrm{a} \sin ^{3} \theta$.
3. Verify divergence theorem for $\mathrm{F}=4 \mathrm{xzi}-\mathrm{y}^{2} \hat{\mathrm{j}}+\mathrm{yzk}$, where S is the surface of the cube bounded by $x=0, x=1, y=0, y=1, z=0$ and $z=1$.
4. (a) Find $L\left[\frac{\sin ^{2} t}{t}\right]$
(b) Find $L^{-1}\left[\frac{s+2}{s^{2}-4 s+13}\right]$
(c) Evaluate the riple integral $\int_{0}^{\pi / 2} \int_{0}^{a \sin } \int_{1}^{\frac{a^{2}-r^{2}}{a}} r d z d r d \theta$
5. (a) Prove that $\operatorname{curl}(\mathbf{A} \times \mathbf{B})=\mathbf{A} \operatorname{div} \mathbf{B}-\mathbf{B} \operatorname{div} \mathbf{A}+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} . \nabla) \mathbf{B}$.
(b) Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at the point $(1,-2$, $-1)$ in the direction of the normal to the surface $f(x, y, z)=x \log z-y^{2}$ at $(-1$, $2,-1$).
6. (a) Test the convergence of the series $\frac{\sqrt{2}-1}{3^{2}-1}+\frac{\sqrt{3}-1}{4^{2}-1}+\frac{\sqrt{4}-1}{5^{2}-1}+\ldots$.
(b) Test whether the following series converges absolutely or conditionally.
$1 . \frac{2}{3}-\frac{1}{2} \cdot \frac{3}{4}+\frac{1}{3} \cdot \frac{4}{5}-\frac{1.5}{4.6}+\ldots .$.
(c) Verify Rolle's theorem for $\mathrm{f}(\mathrm{x})=\mathrm{x}(\mathrm{x}+3) \mathrm{e}^{-x / 2}$ in $[-3,0]$
7. (a) Trace the curve : $x^{4}+y^{4}=2 a^{2} x y$.
(b) Find the surface area got by rotating one loop of the curve $r^{2}=a^{2} \cos 2 \theta$ about the initial line.
8. (a) Form the differential equation by eliminating the arbitrary constant $x \tan (y / x)=c$.
(b) Solve the differential equation: $\frac{d y}{d x}+\mathrm{y} \cos x=\mathrm{y}^{3} \sin 2 x$.
(c) Find the orthogonal trajectories of the family of circles $x^{2}+y^{2}=\mathrm{ax}$.

I B.Tech Examinations,December 2010
 MATHEMATICS - I

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, BT, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

 *****1. (a) Test the convergence of the series $\frac{\sqrt{2}-1}{3^{2}-1}+\frac{\sqrt{3}-1}{4^{2}-1}+\frac{\sqrt{4}-1}{5^{2}-1}+\ldots$.
(b) Test whether the following series converges absolutely or conditionally.
$1 . \frac{2}{3}-\frac{1}{2} \cdot \frac{3}{4}+\frac{1}{3} \cdot \frac{4}{5}-\frac{1.5}{4.6}+\ldots .$.
(c) Verify Rolle's theorem for $\mathrm{f}(\mathrm{x})=\mathrm{x}(\mathrm{x}+3) \mathrm{e}^{-x / 2}$ in $[-3, \phi]$]
2. (a) Trace the curve : $x^{4}+y^{4}=2 a^{2} x y$.
(b) Find the surface area got by rotating one loop of the curver ${ }^{2}=a^{2} \cos 2 \theta$ about the initial line.
3. Verify divergence theorem for $F=4 x z i-y^{2} j+y z k$, where S is the surface of the cube bounded by $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0$ and $\mathrm{z}=1$.
4. (a) Prove that $\operatorname{curl}(\mathbf{A} \times \mathbf{B})=\mathbf{A} \operatorname{div} \mathbf{B}-\mathbf{B} \operatorname{div} \mathbf{A}+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B}$.
(b) Find the directional derivative of $\phi(x, y, z)=x^{2} y z+4 x z^{2}$ at the point $(1,-2$, $-1)$ in the direction of the normal to the surface $f(x, y, z)=x \log z-y^{2}$ at $(-1$, $2,-1)$.
5. (a) Solve the differential equation: $\left(D^{2}+1\right) y=\sin x \sin 2 \mathrm{x}$.
(b) Solve the differential equation: $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{4}$
6. (a) Form the differential equation by eliminating the arbitrary constant $x \tan (y / x)=c$.
(b) Solve the differential equation: $\frac{d y}{d x}+\mathrm{y} \cos x=\mathrm{y}^{3} \sin 2 x$.
(c) Find the orthogonal trajectories of the family of circles $x^{2}+y^{2}=\mathrm{ax}$.
7. (a) Find $L\left[\frac{\sin ^{2} t}{t}\right]$
(b) Find $L^{-1}\left[\frac{s+2}{s^{2}-4 s+13}\right]$
(c) Evaluate the triple integral $\int_{0}^{\pi / 2} \int_{0}^{a} \int_{1}^{\sin } r d z d r d \theta$
8. (a) If $\mathrm{u}=\sin ^{-1}\left[\frac{x^{1 / 3}+y^{1 / 3}}{\sqrt{x}+\sqrt{y}}\right]^{1 / 2}$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=-\frac{1}{12} \tan u$ and $x^{2} \frac{\partial^{2 u}}{\partial x^{2}}+2 x y \frac{\partial^{2 u}}{\partial x \partial y}+y^{2} \frac{\partial^{2 u}}{\partial y^{2}}=\frac{\tan u}{144}\left(13+\tan ^{2} u\right)$
(b) Find the evolute of the curve $\mathrm{x}=\mathrm{a} \cos ^{3} \theta, \mathrm{y}=\mathrm{a} \sin ^{3} \theta$.
