\mathbf{RR}

Set No. 2

[6+6+4]

I B.Tech Examinations,December 2010 SOLID STATE PHYSICS

Common to BME, IT, ICE, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

1. (a) Explain Hall effect.

Code No: RR10201

- (b) Derive the expression for the Hall coefficient of an n-type semiconductor.
- (c) The R_H of a specimen is $3.66 \times 10^{-4} m^3 c^{-1}$. Its resistivity is 8.93×10^{-3} Ohm-m. Find
 - i. mobility of charge carriers and
 - ii. carrier density.
- 2. (a) What is Piezo-electricity?
 - (b) Obtain an expression for the internal field seen by an atom in an infinite array of atoms subjected to an external field.
 - (c) The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7×10^{25} atoms per m^3 . [4+8+4]
- 3. (a) Explain the terms drift velocity, relaxation time and mean free path for free electrons in a metal,
 - (b) Derive an expression for electrical conductivity in metals using Drude-Lorenz theory.
 - (c) Find the mobility of conduction electrons in copper. Civer: Resistivity $-1.7 \times 10^{-8} \text{ O m}$

Given, resistivity	$= 1.7 \times 10^{-1} \Omega^{-111}$	
Atomic weight	= 63.54.	
Density	$= 8.96 \times 10^3 \text{ kg}/m^3$	
Avagadro number	$= 6.025 \times 10^{23}$	[6+6+4]

- 4. (a) Describe the hysteresis of a ferro-magnetic material.
 - (b) Explain the properties and applications of ferrites.
 - (c) Calculate the paramagnetic susceptibility at room temperature for iron oxide, when the material density is 5×10^{28} atoms / m^3 . [6+6+4]
- 5. (a) Define co-ordination number and packing factor of a crystal.
 - (b) Describe the FCC crystal structure.
 - (c) Obtain an expression for the packing factor of FCC structure. [4+6+6]
- 6. (a) State the differences between ordinary light and laser light.
 - (b) Explain the characteristics of laser light.

Code No: RR10201

\mathbf{RR}

Set No. 2

- (c) Write about stimulated emission, spontaneous emission. [4+6+6]
- 7. (a) State and explain Bragg's law.

R.

- (b) Describe with suitable diagram, the powder method for determination of crystal structure.
- (c) A beam of X-rays of wavelength 0.071 nm is diffracted by (110) plane of rock salt with lattice constant of 0.28 nm. Find the glancing angle for the second order diffraction. [4+6+6]
- 8. (a) What is normalization of wave function? Give its significance.
 - (b) A particle of mass 'm' is confined in a field free region between impenetrable walls at x = 0 and x = a. Show that the energy levels of the particle are given by $E_n = n^2 h^2 / 8ma^2$.
 - (c) 10 kV electrons are passed through a thin film of metal for which the atomic spacing is 5.5×10^{-11} m. What is the angle of deviation for the first order diffraction maximum? [5+6+5]

 \mathbf{RR}

Set No. 4

Code No: RR10201

I B.Tech Examinations, December 2010 SOLID STATE PHYSICS

Common to BME, IT, ICE, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) What is Piezo-electricity?
 - (b) Obtain an expression for the internal field seen by an atom in an infinite array of atoms subjected to an external field.
 - (c) The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7×10^{25} atoms per m^3 . [4+8+4]
- 2. (a) Explain the terms drift velocity, relaxation time and mean free path for free electrons in a metal.
 - (b) Derive an expression for electrical conductivity in metals using Drude-Lorenz theory.
 - (c) Find the mobility of conduction electrons in copper.

Given: Resistivity
Atomic weight
Density
Avagadro number

$$= 1.7 \times 10^{-8} \Omega$$
-m.
 $= 63.54.$
 $= 8.96 \times 10^3 \text{ kg/m}^3$
 $= 6.025 \times 10^{23}$
 $[6+6+4]$

- 3. (a) State the differences between ordinary light and laser light.
 - (b) Explain the characteristics of laser light.
 - (c) Write about stimulated emission, spontaneous emission. [4+6+6]
- 4. (a) State and explain Bragg's law.
 - (b) Describe with suitable diagram, the powder method for determination of crystal structure.
 - (c) A beam of X-rays of wavelength 0.071 nm is diffracted by (110) plane of rock salt with lattice constant of 0.28 nm. Find the glancing angle for the second order diffraction. [4+6+6]
- 5. (a) What is normalization of wave function? Give its significance.
 - (b) A particle of mass 'm' is confined in a field free region between impenetrable walls at x = 0 and x = a. Show that the energy levels of the particle are given by $E_n = n^2 h^2 / 8ma^2$.
 - (c) 10 kV electrons are passed through a thin film of metal for which the atomic spacing is 5.5×10^{-11} m. What is the angle of deviation for the first order diffraction maximum? [5+6+5]

RR

Set No. 4

[6+6+4]

- 6. (a) Define co-ordination number and packing factor of a crystal.
 - (b) Describe the FCC crystal structure.
 - (c) Obtain an expression for the packing factor of FCC structure. [4+6+6]
- 7. (a) Explain Hall effect.

Code No: RR10201

- (b) Derive the expression for the Hall coefficient of an n-type semiconductor.
- (c) The R_H of a specimen is $3.66 \times 10^{-4} m^3 c^{-1}$. Its resistivity is 8.93×10^{-3} Ohm-m. Find
 - i. mobility of charge carriers and

RE

- ii. carrier density.
- 8. (a) Describe the hysteresis of a ferro-magnetic material.
 - (b) Explain the properties and applications of ferrites.
 - (c) Calculate the paramagnetic susceptibility at room temperature for iron oxide, when the material density is 5×10^{28} atoms $\sqrt{m^3}$. [6+6+4]

RR

Set No. 1

Code No: RR10201

I B.Tech Examinations, December 2010 SOLID STATE PHYSICS

Common to BME, IT, ICE, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks * * * * *

- 1. (a) Define co-ordination number and packing factor of a crystal.
 - (b) Describe the FCC crystal structure.
 - (c) Obtain an expression for the packing factor of FCC structure. [4+6+6]
- 2. (a) What is Piezo-electricity?
 - (b) Obtain an expression for the internal field seen by an atom in an infinite array of atoms subjected to an external field.
 - (c) The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7×10^{25} atoms per m^3 . [4+8+4]
- 3. (a) Explain the terms drift velocity, relaxation time and mean free path for free electrons in a metal.
 - (b) Derive an expression for electrical conductivity in metals using Drude-Lorenz theory.
 - (c) Find the mobility of conduction electrons in copper. Given: Resistivity $= 1.7 \times 10^{-8} \Omega$ -m. Atomic weight = 63.54. Density $= 8.96 \times 10^3 \text{ kg/m}^3$ Avagadro number $= 6.025 \times 10^{23}$ [6+6+4]
- 4. (a) Describe the hysteresis of a ferro-magnetic material.
 - (b) Explain the properties and applications of ferrites.
 - (c) Calculate the paramagnetic susceptibility at room temperature for iron oxide, when the material density is 5×10^{28} atoms / m^3 . [6+6+4]
- 5. (a) State and explain Bragg's law.
 - (b) Describe with suitable diagram, the powder method for determination of crystal structure.
 - (c) A beam of X-rays of wavelength 0.071 nm is diffracted by (110) plane of rock salt with lattice constant of 0.28 nm. Find the glancing angle for the second order diffraction. [4+6+6]
- 6. (a) Explain Hall effect.
 - (b) Derive the expression for the Hall coefficient of an n-type semiconductor.

www.firstranker.com

Code No: RR10201

RR

Set No. 1

- (c) The R_H of a specimen is $3.66 \times 10^{-4} m^3 c^{-1}$. Its resistivity is 8.93×10^{-3} Ohm-m. Find [6+6+4]
 - i. mobility of charge carriers and
 - ii. carrier density.
- 7. (a) State the differences between ordinary light and laser light.
 - (b) Explain the characteristics of laser light.

RŚ

- (c) Write about stimulated emission, spontaneous emission. [4+6+6]
- 8. (a) What is normalization of wave function? Give its significance.
 - (b) A particle of mass 'm' is confined in a field free region between impenetrable walls at x = 0 and x = a. Show that the energy levels of the particle are given by $E_n = n^2 h^2 / 8ma^2$.
 - (c) 10 kV electrons are passed through a thin film of metal for which the atomic spacing is 5.5×10^{-11} m. What is the angle of deviation for the first order diffraction maximum? [5+6+5]

Code No: RR10201

 \mathbf{RR}

Set No. 3

I B.Tech Examinations,December 2010 SOLID STATE PHYSICS Common to BME, IT, ICE, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Answer any FIVE Questions All Questions carry equal marks

1. (a) Explain the terms drift velocity, relaxation time and mean free path for free electrons in a metal.

- (b) Derive an expression for electrical conductivity in metals using Drude-Lorenz theory.
- (c) Find the mobility of conduction electrons in copper. Given: Resistivity $= 1.7 \times 10^{-8} \Omega$ -m. Atomic weight = 63.54. Density $= 8.96 \times 10^3 \text{ kg/m}^3$ Avagadro number $= 6.025 \times 10^{23}$ [6+6+4]
- 2. (a) Define co-ordination number and packing factor of a crystal.
 - (b) Describe the FCC crystal structure.
 - (c) Obtain an expression for the packing factor of FCC structure. [4+6+6]
- 3. (a) Describe the hysteresis of a ferro-magnetic material.
 - (b) Explain the properties and applications of ferrites.
 - (c) Calculate the paramagnetic susceptibility at room temperature for iron oxide, when the material density is 5×10^{28} atoms / m^3 . [6+6+4]
- 4. (a) What is Piezo-electricity?
 - (b) Obtain an expression for the internal field seen by an atom in an infinite array of atoms subjected to an external field.
 - (c) The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atoms if the gas contains 2.7×10^{25} atoms per m^3 . [4+8+4]
- 5. (a) Explain Hall effect.
 - (b) Derive the expression for the Hall coefficient of an n-type semiconductor.
 - (c) The R_H of a specimen is $3.66 \times 10^{-4} m^3 c^{-1}$. Its resistivity is 8.93×10^{-3} Ohm-m. Find [6+6+4]
 - i. mobility of charge carriers and
 - ii. carrier density.
- 6. (a) State and explain Bragg's law.
 - (b) Describe with suitable diagram, the powder method for determination of crystal structure.

Code No: RR10201

RR

Set No. 3

- (c) A beam of X-rays of wavelength 0.071 nm is diffracted by (110) plane of rock salt with lattice constant of 0.28 nm. Find the glancing angle for the second order diffraction. [4+6+6]
- 7. (a) What is normalization of wave function? Give its significance.
 - (b) A particle of mass 'm' is confined in a field free region between impenetrable walls at x = 0 and x = a. Show that the energy levels of the particle are given by $E_n = n^2 h^2 / 8ma^2$.
 - (c) 10 kV electrons are passed through a thin film of metal for which the atomic spacing is 5.5×10^{-11} m. What is the angle of deviation for the first order diffraction maximum? [5+6+5]
- 8. (a) State the differences between ordinary light and laser light.
 - (b) Explain the characteristics of laser light.
 - (c) Write about stimulated emission, spontaneous emission. [4+6+6]