I B.Tech Examinations,December 2010
 NETWORK THEORY

Common to BME, IT, ICE, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find ABCD parameters for the following network shown in figure4a.

Figure 4 a

(b) Show that the total energy stored in the series RLC circuit is a constant when a constant voltage at resonance frequency is applied: Define Q-factor in terms of this energy.
2. (a) Explain the terms Graph. Tree, and a Cutset of a network with suitable example.
(b) For the network shown the figure6b, determine the value of the node voltages $V_{1} \& V_{2}$ Determine the power dissipated in each of the resistors.

Figure 6b
(c) Obtain the expression for the propagation constant of symmetrical T-network.

$$
[4+8+4]
$$

3. (a) Explain why the voltage across capacitor cannot change instantaneously?
(b) What is the significance of time constant for R-L circuit? What are the different ways of defining time constant?
(c) Switch t is close at $\mathrm{t}=0$. Find initial conditions for voltage across capacitor, $\mathrm{i}_{1}, \mathrm{i}_{2}, \frac{d i_{1}}{d t}$ and $\frac{d i_{2}}{d t}$. In the following network shown in figure2c. $\quad[2+4+10]$

Figure 2c
4. (a) State and explain the superposition theorem.
(b) Using super position theorem find the current in 2 ohms resistor from the following network shown in figure3b.
[6+10]

Figure 3b
5. (a) Get the expression for complex power and the sign of the active power.
(b) Find I_{1}, I_{2}, I_{3} and I Find also the power consumed for the network shown in figure 7b. Draw the phasor diagram.

Figure 7b
6. (a) A 3phase 4000 V system has a delta connected load with $\mathrm{Z}_{a b}=(8+\mathrm{j} 6) \Omega \mathrm{Z}_{b c}=(12+\mathrm{j} 16) \Omega$ and $\mathrm{Z}_{c a}=(6-\mathrm{j} 8) \Omega$. Find the phase currents and line currents. Determine the power consumed by each load impedance. Draw the phasor diagram.
(b) Three impedances are connected in figure 5 b shown across a $400 \mathrm{~V}, 50 \mathrm{HZ}, 3$ phase supply. Find the readings of the watt meters.

Figure 5b
7. (a) Write down the integro differential equations for the magnetically coupled circuit shown in figure1a. The mutual inductences between L_{1} and $\mathrm{L}_{2}, \mathrm{~L}_{2}$ and L_{3}, and L_{3} and L_{1} are respectively $\mathrm{M}_{12}, \mathrm{M}_{23}$ and M_{13}.

Figure 1a
(b) Derive the relation between the flux density B and magnetising force H . Also derive the expression for reluctance.
8. (a) State and explain KCL and KVL
(b) Distinguish between
i. independent and dependent sources
ii. Ideal and practical sources.
(c) Find V_{s} if $\mathrm{r}_{1}=2 \Omega \mathrm{r}_{2}=1 \Omega \mathrm{r}_{3}=5 \Omega$ the following figure8c.

$$
[4+4+8]
$$

Figure 8c

Common to BME, IT, ICE, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE
Time: 3 hours
Max Marks: 80

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a) State and explain the superposition theorem.
(b) Using super position theorem find the current in 2 ohms resistor from the following network shown in figure3b.

$$
\sqrt{[6+10]}
$$

Figure 3b
2. (a) Write down the integro differential equations for the magnetically coupled circuit shown in figurela. The mutual inductences between L_{1} and $\mathrm{L}_{2}, \mathrm{~L}_{2}$ and L_{3}, and L_{3} and L_{1} are respectively $\mathrm{M}_{12}, \mathrm{M}_{23}$ and M_{13}.

Figure 1a
(b) Derive the relation between the flux density B and magnetising force H . Also derive the expression for reluctance. [8+8]
3. (a) A 3phase 4000 V system has a delta connected load with $\mathrm{Z}_{a b}=(8+\mathrm{j} 6) \Omega \mathrm{Z}_{b c}=(12+\mathrm{j} 16) \Omega$ and $\mathrm{Z}_{c a}=(6-\mathrm{j} 8) \Omega$. Find the phase currents and line currents. Determine the power consumed by each load impedance. Draw the phasor diagram.
(b) Three impedances are connected in figure 5b shown across a $400 \mathrm{~V}, 50 \mathrm{HZ}, 3$ phase supply. Find the readings of the watt meters.

Figure $5 b$

4. (a) Explain the terms Graph, Tree, and a Cutset of a network with suitable example.
(b) For the network shown the figure6b, determine the value of the node voltages $\mathrm{V}_{1} \& \mathrm{~V}_{2}$. Determine the power dissipated in each of the resistors.

Figure 6b
(c) Obtain the expression for the propagation constant of symmetrical T-network.

$$
[4+8+4]
$$

5. (a) State and explain KCL and KVL
(b) Distinguish between
i. independent and dependent sources
ii. Ideal and practical sources.
(c) Find V_{s} if $\mathrm{r}_{1}=2 \Omega \mathrm{r}_{2}=1 \Omega \mathrm{r}_{3}=5 \Omega$ the following figure8c.

$$
[4+4+8]
$$

Figure 8c
6. (a) Find ABCD parameters for the following network shown in figure4a.

Figure 4 a
(b) Show that the total energy stored in the series RLC circuit is a constant when a constant voltage at resonance frequency is applied: Define Q-factor in terms of this energy.
7. (a) Get the expression for eomplex power and the sign of the active power.
(b) Find I_{1}, I_{2}, I_{3} and IFind also the power consumed for the network shown in figure 7b, Draw the phasor diagram.

Figure 7b
8. (a) Explain why the voltage across capacitor cannot change instantaneously?
(b) What is the significance of time constant for R-L circuit? What are the different ways of defining time constant?
(c) Switch t is close at $\mathrm{t}=0$. Find initial conditions for voltage across capacitor, $\mathrm{i}_{1}, \mathrm{i}_{2}, \frac{d i_{1}}{d t}$ and $\frac{d i_{2}}{d t}$. In the following network shown in figure2c. $\quad[2+4+10]$

Figure 2c

Common to BME, IT, ICE, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Explain why the voltage across capacitor cannot change instantaneously?
(b) What is the significance of time constant for $\mathrm{R}-\mathrm{L}$ circuit? What are the different ways of defining time constant?
(c) Switch t is close at $\mathrm{t}=0$. Find initial conditions for voltage across capacitor, $\mathrm{i}_{1}, \mathrm{i}_{2}, \frac{d i_{1}}{d t}$ and $\frac{d i_{2}}{d t}$. In the following network shown in figure2c.

Figure 2c
2. (a) Get the expression for complex power and the sign of the active power.
(b) Find $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ and I Find also the power consumed for the network shown in figure 7b. Draw the phasor diagram.

Figure 7b
3. (a) State and explain the superposition theorem.
(b) Using super position theorem find the current in 2 ohms resistor from the following network shown in figure3b.

Figure 3b
4. (a) Find ABCD parameters for the following network shown in figure4a.

Figure 4 a

(b) Show that the total energy stored in the series RLC circuit is a constant when a constant voltage at resonance frequency is applied: Define Q-factor in terms of this energy.
5. (a) A 3phase 4000 V system has a delta connected load with $\mathrm{Z}_{a b}=(8+\mathrm{j} 6) \Omega \mathrm{Z}_{b c}=(12+\mathrm{j} 16) \Omega$ and $Z_{c a}=(6-j 8) \Omega$. Find the phase currents and line currents. Determine the power consumed by each load impedance. Draw the phasor diagram.
(b) Three impedances are connected in figure 5b shown across a 400V, 50HZ, 3 phase supply. Find the readings of the watt meters.

Figure 5b
6. (a) Write down the integro differential equations for the magnetically coupled circuit shown in figure1a. The mutual inductences between L_{1} and L_{2}, L_{2} and L_{3}, and L_{3} and L_{1} are respectively $\mathrm{M}_{12}, \mathrm{M}_{23}$ and M_{13}.

Figure 1a
(b) Derive the relation between the flux density B and magnetising force H. Also derive the expression for reluctance.
7. (a) Explain the terms Graph, Tree, and a Cutset of a network with suitable example.
(b) For the network shown the figure6b, determine the value of the node voltages $\mathrm{V}_{1} \& \mathrm{~V}_{2}$. Determine the power dissipated in each of the resistors.

Figure 6b
(c) Obtain the expression for the propagation constant of symmetrical T-network.

$$
[4+8+4]
$$

8. (a) State and explain KCL and KVL
(b) Distinguish between
i. independent and dependent sources
ii. Ideal and practical sources.
(c) Find V_{s} if $\mathrm{r}_{1}=2 \Omega \mathrm{r}_{2}=1 \Omega \mathrm{r}_{3}=5 \Omega$ the following figure8c.

$$
[4+4+8]
$$

Figure 8c

I B.Tech Examinations,December 2010
NETWORK THEORY
Common to BME, IT, ICE, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Write down the integro differential equations for the magnetically coupled circuit shown in figure1a. The mutual inductences between L_{1} and L_{2}, L_{2} and L_{3}, and L_{3} and L_{1} are respectively $\mathrm{M}_{12}, \mathrm{M}_{23}$ and M_{13}.

Figure 1a
(b) Derive the relation between the flux density B and magnetising force H. Also derive the expression for reluctance.
2. (a) Explain why the voltage across capacitor cannot change instantaneously?
(b) What is the significance of time constant for R-L circuit? What are the different ways of defining time constant?
(c) Switch t is close at $\mathrm{t}=0$. Find initial conditions for voltage across capacitor, $\mathrm{i}_{1}, \mathrm{i}_{2}, \frac{d i_{1}}{d t}$ and $\frac{d i_{2}}{d t}$. In the following network shown in figure2c. $\quad[2+4+10]$

Figure 2c
3. (a) State and explain the superposition theorem.
(b) Using super position theorem find the current in 2 ohms resistor from the following network shown in figure3b.

Figure 3b
4. (a) Find ABCD parameters for the following network shown in figure4a.

Figure 4a
(b) Show that the total energy stored in the series RLC circuit is a constant when a constant voltage at resonance frequency is applied: Define Q-factor in terms of this energy. $[8+8]$
5. (a) A 3phase 4000 V system has a delta connected load with $\mathrm{Z}_{a b}=(8+\mathrm{j} 6) \Omega \mathrm{Z}_{b c}=(12+\mathrm{j} 16) \Omega$ and $Z_{c a}=(6-j 8) \Omega$. Find the phase currents and line currents. Determine the power consumed by each load impedance. Draw the phasor diagram.
(b) Three impedances are connected in figure 5b shown across a $400 \mathrm{~V}, 50 \mathrm{HZ}, 3$ phase supply. Find the readings of the watt meters. $[10+6]$

Figure 5b
6. (a) Explain the terms Graph, Tree, and a Cutset of a network with suitable example.
(b) For the network shown the figure6b, determine the value of the node voltages $\mathrm{V}_{1} \& \mathrm{~V}_{2}$. Determine the power dissipated in each of the resistors.

Figure 6b
(c) Obtain the expression for the propagation constant of symmetrical T-network.

$$
[4+8+4]
$$

7. (a) Get the expression for complex power and the signof the active power.
(b) Find $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ and I Find also the power consumed for the network shown in figure 7 b . Draw the phasor diagram.

Figure 7b
8. (a) State and explain KCL and KVL
(b) Distinguish between
i. independent and dependent sources
ii. Ideal and practical sources.
(c) Find V_{s} if $r_{1}=2 \Omega r_{2}=1 \Omega r_{3}=5 \Omega$ the following figure8c. $\quad[4+4+8]$

Figure 8c

