II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II
Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Form the partial differential equation by eliminating the arbitrary functions $z=f(x-i t)+g(x-i t)$
(b) Solve the partial differential equation pyz $+q z=x y$.
(c) Solve the partial differential equation $\left(z^{2}-2 y z-y^{2}\right) p-(x y-z x) q=x y-z x$
2. (a) Show that $\mathrm{A}=\left[\begin{array}{ccc}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right]$ is a skew-Hermitian matrix and also umitary
(b) Show that the matrix $\frac{1}{2}$
 is orthogonal.
3. A bar 10 cm long with insulated surfaces, has its ends A and B kept at $40^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$, respectively until steady state conditions prevail. Then both the ends are suddenly insulated and kept so. Find the subsequent temperature function u (x, t).
4. (a) Find the Z transform of $2^{2 k+3}$
(b) Solve the difference equation, using Z - transforms
$y_{n+2}-4 y_{n+1}+3 y_{n}=0$ given that $y_{0}=2$ and $y_{1}=4$
5. (a) Find the Fourier series of the following function $f(x)= \begin{cases}x^{2}, & 0 \leq x \leq \pi \\ -x^{2}, & -\pi \leq x \leq 0\end{cases}$
(b) If $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<x<\frac{\pi}{2}$

$$
\begin{equation*}
=\pi-x, \frac{\pi}{2}<x<\pi \tag{6}
\end{equation*}
$$

Show that $\mathrm{f}(\mathrm{x})=\frac{\pi}{4}-\frac{2}{\pi}\left[\frac{1}{1^{2}} \cos 2 x+\frac{1}{3^{2}} \cos 6 x+\frac{1}{5^{2}} \cos 10 x+\ldots ..\right]$
6. (a) For what value of K the matrix

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
4 & 4 & -3 & 1 \\
1 & 1 & -1 & 0 \\
k & 2 & 2 & 2 \\
9 & 9 & k & 3
\end{array}\right] \text { has rank } 3 .}
\end{aligned}
$$

(b) Find whether the following set of equations are consistent if so, solve them.[8]

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
x_{1}+x_{2}+x_{3}-x_{4}=4 \\
x_{1}+x_{2}-x_{3}+x_{4}=-4 \\
x_{1}-x_{2}+x_{3}+x_{4}=2 .
\end{gathered}
$$

7. Solve the partial differential equation using Fourier transforms, $\frac{\partial^{2} u}{\partial t^{2}}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$ related to a string of length π subject to
(a) $u(0, t)=a \sin w t$
(b) $u(\pi, t)=0$
(c) $\mathrm{u}(\mathrm{x}, 0)=0$
(d) $\left(\frac{\partial u}{\partial t}\right)_{(x, 0)}=0$
8. If $\mathrm{A}=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ verify cayley Hamilton theorem.

Find A^{4} and A^{-1} using cayley Hamilton theorem.

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find the Z transform of $2^{2 k+3}$
(b) Solve the difference equation, using Z - transforms
$y_{n+2}-4 y_{n+1}+3 y_{n}=0$ given that
$y_{0}=2$ and $y_{1}=4$
2. A bar 10 cm long with insulated surfaces, has its ends A and B kept at $40^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$, respectively until steady state conditions prevail. Then both the ends are suddenly insulated and kept so. Find the subsequent temperature function u (x, t).
3. Solve the partial differential equation using Fourier transforms, $\frac{\partial^{2} u}{\partial t^{2}}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$ related to a string of length π subject to
(a) $u(0, t)=a \sin w t$
(b) $\mathrm{u}(\pi, \mathrm{t})=0$
(c) $u(x, 0)=0$
(d) $\left(\frac{\partial u}{\partial t}\right)_{(x, 0)}=0$
4. If $\mathrm{A}=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ verify cayley Hamilton theorem.

Find A^{4} and A^{-1} using cayley Hamilton theorem.
(a) Form the partial differential equation by eliminating the arbitrary functions $\mathrm{z}=\mathrm{f}(\mathrm{x}-\mathrm{it})+\mathrm{g}(\mathrm{x}-\mathrm{it})$
(b) Solve the partial differential equation pyz $+\mathrm{qz}=\mathrm{xy}$.
(c) Solve the partial differential equation $\left(z^{2}-2 y z-y^{2}\right) p+(x y+z x) q=x y-z x$
6. (a) Show that $\mathrm{A}=\left[\begin{array}{ccc}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right]$ is a skew-Hermitian matrix and also umitary
(b) Show that the matrix $\frac{1}{2}\left[\begin{array}{cccc}-1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1\end{array}\right]$ is orthogonal. $[8+8]$
7. (a) Find the Fourier series of the following function $f(x)= \begin{cases}x^{2}, & 0 \leq x \leq \pi \\ -x^{2}, & -\pi \leq x \leq 0\end{cases}$
(b) If $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<x<\frac{\pi}{2}$

$$
\begin{equation*}
=\pi-x, \frac{\pi}{2}<x<\pi \tag{6}
\end{equation*}
$$

Show that $\mathrm{f}(\mathrm{x})=\frac{\pi}{4}-\frac{2}{\pi}\left[\frac{1}{1^{2}} \cos 2 x+\frac{1}{3^{2}} \cos 6 x+\frac{1}{5^{2}} \cos 10 x+\ldots ..\right]$
8. (a) For what value of K the matrix

$$
\left[\begin{array}{cccc}
4 & 4 & -3 & 1 \\
1 & 1 & -1 & 0 \\
k & 2 & 2 & 2 \\
9 & 9 & k & 3
\end{array}\right] \text { has rank } 3
$$

(b) Find whether the following set of equations are consistent if so, solve them.[8]

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}+x_{4}=0 \\
& x_{1}+x_{2}+x_{3}-x_{4}=4 \\
& x_{1}+x_{2}-x_{3}+x_{4}=-4 \\
& x_{1}-x_{2}+x_{3}+x_{4}=2
\end{aligned}
$$

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours

Answer any FIVE Questions
All Questions carry equal marks

1. (a) Show that $\mathrm{A}=\left[\begin{array}{ccc}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right]$ is a skew-Hermitian matrix and also mmitary
(b) Show that the matrix $\frac{1}{2}\left[\begin{array}{cccc}-1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1\end{array}\right]$ is orthogonal. $[8+8]$
2. (a) For what value of K the matrix

$$
\left[\begin{array}{cccc}
4 & 4 & -3 & 1 \tag{8}\\
1 & 1 & -1 & 0 \\
k & 2 & 2 & 2 \\
9 & 9 & k & 3
\end{array}\right] \text { has rank } 3 .
$$

(b) Find whether the following set of equations are consistent if so, solve them.[8]

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
x_{1}+x_{2}+x_{3}-x_{4}=4 \\
x_{1}+x_{2}-x_{3}+x_{4}=-4 \\
x_{1}-x_{2}+x_{3}+x_{4}=2 .
\end{gathered}
$$

3. Solve the partial differential equation using Fourier transforms, $\frac{\partial^{2} u}{\partial t^{2}}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$ related to a string of length π subject to
(a) $u(0, t)=a \sin w t$
(b) $\mathrm{u}(\pi, \mathrm{t})=0$
(c) $\mathrm{u}(\mathrm{x}, 0)=0$
(d) $\left(\frac{\partial u}{\partial t}\right)_{(x, 0)}=0$
4. If $\mathrm{A}=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ verify cayley Hamilton theorem.

Find A^{4} and A^{-1} using cayley Hamilton theorem.
5. (a) Find the Fourier series of the following function $f(x)= \begin{cases}x^{2}, & 0 \leq x \leq \pi \\ -x^{2}, & -\pi \leq x \leq 0\end{cases}$
(b) If $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<x<\frac{\pi}{2}$

$$
=\pi-x, \frac{\pi}{2}<x<\pi
$$

$$
\begin{equation*}
\text { Show that } \mathrm{f}(\mathrm{x})=\frac{\pi}{4}-\frac{2}{\pi}\left[\frac{1}{1^{2}} \cos 2 x+\frac{1}{3^{2}} \cos 6 x+\frac{1}{5^{2}} \cos 10 x+\ldots . .\right] \tag{6}
\end{equation*}
$$

6. A bar 10 cm long with insulated surfaces, has its ends A and B kept at $40^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$, respectively until steady state conditions prevail. Then both the ends are suddenly insulated and kept so. Find the subsequent temperature function u (x, t).
7. (a) Find the Z transform of $2^{2 k+3}$
(b) Solve the difference equation, using Z - transforms $y_{n+2}-4 y_{n+1}+3 y_{n}=0$ given that $y_{0}=2$ and $y_{1}=4$
8. (a) Form the partial differential equation by eliminating the arbitrary functions $z=f(x-i t)+g(x-i t)$
(b) Solve the partial differential equation $\mathrm{pyz}+\mathrm{qz}=\mathrm{xy}$. [5]
(c) Solve the partial differential equation $\left(z^{2}-2 y z-y^{2}\right) p+(x y+z x) q=x y-z x$

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find the Fourier series of the following function $f(x)= \begin{cases}x^{2}, & 0 \leq x \leq \pi \\ -x^{2}, & \pi \leq x \leq 0\end{cases}$ [10]
(b) If $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<x<\frac{\pi}{2}$

$$
=\pi-x, \frac{\pi}{2}<x<\pi
$$

Show that $\mathrm{f}(\mathrm{x})=\frac{\pi}{4}-\frac{2}{\pi}\left[\frac{1}{1^{2}} \cos 2 x+\frac{1}{3^{2}} \cos 6 x+\frac{1}{5^{2}} \cos 10 x+\ldots ..\right]$
2. (a) For what value of K the matrix
$\left[\begin{array}{cccc}4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3\end{array}\right]$ has rank 3.
(b) Find whether the following set of equations are consistent if so, solve them.[8]

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
x_{1}+x_{2}+x_{3}-x_{4}=4 \\
x_{1}+x_{2}-x_{3}+x_{4}=-4 \\
x_{1}-x_{2}+x_{3}+x_{4}=2 .
\end{gathered}
$$

3. If $\mathrm{A}=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ verify cayley Hamilton theorem.

Find A^{4} and A^{-1} using cayley Hamilton theorem.
4. A bar 10 cm long with insulated surfaces, has its ends A and B kept at $40^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$, respectively until steady state conditions prevail. Then both the ends are suddenly insulated and kept so. Find the subsequent temperature function u (x , t).
5. (a) Form the partial differential equation by eliminating the arbitrary functions $z=f(x-i t)+g(x-i t)$
(b) Solve the partial differential equation pyz $+\mathrm{qz}=\mathrm{xy}$.
(c) Solve the partial differential equation $\left(z^{2}-2 y z-y^{2}\right) p+(x y+z x) q=x y-z x$
6. (a) Find the Z transform of $2^{2 k+3}$
(b) Solve the difference equation, using Z - transforms
$y_{n+2}-4 y_{n+1}+3 y_{n}=0$ given that $y_{0}=2$ and $y_{1}=4$
7. Solve the partial differential equation using Fourier transforms, $\frac{\partial^{2} u}{\partial t^{2}}=C^{2} \frac{\partial^{2} u}{\partial x^{2}}$ related to a string of length π subject to
(a) $u(0, t)=a \sin w t$
(b) $\mathrm{u}(\pi, \mathrm{t})=0$
(c) $\mathrm{u}(\mathrm{x}, 0)=0$
(d) $\left(\frac{\partial u}{\partial t}\right)_{(x, 0)}=0$
8. (a) Show that $\mathrm{A}=\left[\begin{array}{lll}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right]$ is a skew-Hermitian matrix and also umitary
(b) Show that the matrix $\frac{1}{2}$

