Code No: RR210101

RR

Set No. 2

[5]

[6]

II B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

> Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Form the partial differential equation by eliminating the arbitrary functions z = f(x - it) + g(x - it) [5]
 - (b) Solve the partial differential equation pyz + qz = xy.
 - (c) Solve the partial differential equation $(z^2 2yz y^2)p + (xy + zx)q = xy zx$

2. (a) Show that $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is a skew-Hermitian matrix and also unitary (b) Show that the matrix $\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 1 \end{bmatrix}$ is orthogonal

(b) Show that the matrix
$$\frac{1}{2}$$
 $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}$ is orthogonal. [8+8]

- 3. A bar 10cm long with insulated surfaces , has its ends A and B kept at 40° C and 80° C , respectively until steady state conditions prevail. Then both the ends are suddenly insulated and kept so. Find the subsequent temperature function u (x, t). [16]
- 4. (a) Find the Z transform of 2^{2k+3} [6]
 - (b) Solve the difference equation, using Z transforms $y_{n+2} - 4y_{n+1} + 3y_n = 0$ given that $y_0 = 2$ and $y_1 = 4$ [10]

5. (a) Find the Fourier series of the following function $f(x) = \begin{cases} x^2, & 0 \le x \le \pi \\ -x^2, & -\pi \le x \le 0 \end{cases}$ [10]

(b) If f(x)=x, $0 < x < \frac{\pi}{2}$ = $\pi - x, \frac{\pi}{2} < x < \pi$

Show that
$$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\frac{1}{1^2} \cos 2x + \frac{1}{3^2} \cos 6x + \frac{1}{5^2} \cos 10x + \dots \right]$$
 [6]

Code No: RR210101

RR

Set No. 2

6. (a) For what value of K the matrix $\begin{bmatrix} 4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3 \end{bmatrix}$ has rank 3.

(b) Find whether the following set of equations are consistent if so, solve them.[8]

$$x_1 + x_2 + x_3 + x_4 = 0$$

$$x_1 + x_2 + x_3 - x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = -4$$

$$x_1 - x_2 + x_3 + x_4 = 2.$$

- 7. Solve the partial differential equation using Fourier transforms, $\frac{\partial^2 u}{\partial t^2}$ $\frac{\partial^2 u}{\partial r^2}$ related to a string of length π subject to
- (a) $u(0, t) = a \sin wt$ (b) $u(\pi, t) = 0$ (c) u(x, 0) = 0(d) $\left(\frac{\partial u}{\partial t}\right)_{(x,0)} = 0$ [16]8. If $A = \frac{1}{3}\begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ verify cayley Hamilton theorem. Find A^4 and A^{-1} using cayley Hamilton theorem. verify cayley Hamilton theorem. [16]

[8]

Set No. 4 RR Code No: RR210101

II B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, AME, ICE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find the Z transform of 2^{2k+3}
 - (b) Solve the difference equation, using Z transforms $y_{n+2} - 4y_{n+1} + 3y_n = 0$ given that $y_0 = 2$ and $y_1 = 4$
- 2. A bar 10cm long with insulated surfaces , has its ends A and B kept at 40° C and 80° C, respectively until steady state conditions prevail. Then both the ends are suddenly insulated and kept so. Find the subsequent temperature function u (x , t). [16]
- 3. Solve the partial differential equation using Fourier transforms, $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$ related to a string of length π subject to
 - (a) $u(0, t) = a \sin wt$
 - (b) $u(\pi, t) = 0$
 - [16]

(b) $u(\pi, t) = 0$ (c) u(x, 0) = 0(d) $\left(\frac{\partial u}{\partial t}\right)_{(x,0)} = 0$ 4. If $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ verify cayley Hamilton theorem. Find A^4 and A^{-1} using cayley Hamilton theorem.

5. (a) Form the partial differential equation by eliminating the arbitrary functions z = f(x - it) + g(x - it) $\left[5\right]$

- (b) Solve the partial differential equation pyz + qz = xy. [5]
- (c) Solve the partial differential equation $(z^2 2yz y^2)p + (xy + zx)q = xy zx$
 - [6]

[16]

[6]

[10]

6. (a) Show that $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is a skew-Hermitian matrix and also umitary (b) Show that the matrix $\frac{1}{2}\begin{bmatrix} -1 & 1 & 1 & 1\\ 1 & -1 & 1 & 1\\ 1 & 1 & -1 & 1\\ 1 & 1 & 1 & -1 \end{bmatrix}$ is orthogonal. [8+8]

Code No: RR210101 RR Set No. 4

7. (a) Find the Fourier series of the following function $f(x) = \begin{cases} x^2, & 0 \le x \le \pi \\ -x^2, & -\pi \le x \le 0 \end{cases}$ [10]

(b) If $f(x) = x, 0 < x < \frac{\pi}{2}$

$$= \pi - x, \frac{\pi}{2} < x < \pi$$

Show that $f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\frac{1}{1^2} \cos 2x + \frac{1}{3^2} \cos 6x + \frac{1}{5^2} \cos 10x + \dots \right]$ [6]

[8]

- 8. (a) For what value of K the matrix
 - $\begin{bmatrix} 4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3 \end{bmatrix}$ has rank 3.
 - (b) Find whether the following set of equations are consistent if so, solve them.[8]

$$x_1 + x_2 + x_3 + x_4 = 0$$

$$x_1 + x_2 + x_3 - x_4 = 4$$

$$x_1 + x_2 - x_3 + x_4 = -4$$

$$x_1 - x_2 + x_3 + x_4 = 2.$$

$$\star \star \star \star$$

(c)
$$u(x, 0) = 0$$

(d)
$$\left(\frac{\partial u}{\partial t}\right)_{(x,0)} = 0$$
 [16]

4. If
$$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$
 verify cayley Hamilton theorem.
Find A^4 and A^{-1} using cayley Hamilton theorem. [16]

5. (a) Find the Fourier series of the following function $f(x) = \begin{cases} x^2, & 0 \le x \le \pi \\ -x^2, & -\pi \le x \le 0 \end{cases}$

Code No: RR210101

(b) If $f(x) = x, 0 < x < \frac{\pi}{2}$

$$= \pi - x, \frac{\pi}{2} < x < \pi$$

Show that $f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\frac{1}{1^2} \cos 2x + \frac{1}{3^2} \cos 6x + \frac{1}{5^2} \cos 10x + \dots \right]$ [6]

6. A bar 10cm long with insulated surfaces , has its ends A and B kept at 40°C and 80°C , respectively until steady state conditions prevail. Then both the ends are suddenly insulated and kept so. Find the subsequent temperature function u (x, t).
[16]

RR

- 7. (a) Find the Z transform of 2^{2k+3}
 - (b) Solve the difference equation, using Z transforms $y_{n+2} - 4y_{n+1} + 3y_n = 0$ given that $y_0 = 2$ and $y_1 = 4$ [10]
- 8. (a) Form the partial differential equation by eliminating the arbitrary functions z = f(x - it) + g(x - it)[5]
 - (b) Solve the partial differential equation pyz + qz = xy. [5]
 - (c) Solve the partial differential equation $(z^2 2yz y^2)p + (xy + zx)q = xy zx$

[6]

Set No.

1

[10]

- 4. A bar 10cm long with insulated surfaces , has its ends A and B kept at 40° C and 80° C , respectively until steady state conditions prevail. Then both the ends are suddenly insulated and kept so. Find the subsequent temperature function u (x, t). [16]
- 5. (a) Form the partial differential equation by eliminating the arbitrary functions z = f(x it) + g(x it) [5]
 - (b) Solve the partial differential equation pyz + qz = xy. [5]

www.firstranker.com

$\mathbf{R}\mathbf{R}$

Set No. 3

[6]

[6]

(c) Solve the partial differential equation $(z^2 - 2yz - y^2)p + (xy + zx)q = xy - zx$

6. (a) Find the Z transform of
$$2^{2k+3}$$

Code No: RR210101

- (b) Solve the difference equation, using Z transforms $y_{n+2} - 4y_{n+1} + 3y_n = 0$ given that $y_0 = 2$ and $y_1 = 4$ [10]
- 7. Solve the partial differential equation using Fourier transforms, $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$ related to a string of length π subject to

(a)
$$u(0, t) = a \sin wt$$

(b) $u(\pi, t) = 0$
(c) $u(x, 0) = 0$
(d) $\left(\frac{\partial u}{\partial t}\right)_{(x,0)} = 0$
[16]
8. (a) Show that $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is a skew-Hermitian matrix and also unitary
(b) Show that the matrix $\frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}$ is orthogonal. [8+8]
 $\star \star \star \star \star$