II B.Tech I Semester Examinations,November 2010 ELECTROMAGNETIC FIELDS
 Electrical And Electronics Engineering

Time: 3 hours

Answer any FIVE Questions
 All Questions carry equal marks

1. A uniform plane wave at 1 MHz travels in air in a direction that makes 30° with x-axis, 60° with Y-axis and 90° with Z-axis. It has a Z-directed electric field of magnitude $5 \mathrm{~V} / \mathrm{m}$. Express the electric and magnetic fields in vector form. [16]
2. What is the value of the E field at the surface of a flat conducting sheet which has placed on it a surface charge density of $\rho_{s}=10^{-2} \mathrm{C} / \mathrm{m}^{2}$.
3. Derive an expression for energy density in a magnetic field and use this formula for computing energy density in a magnetic field having flux density equal to 1 Tesla.
4. Explain the Faradays disc generator and derive an expression for finding the unknown magnetic field.
5. (a) Obtain an expression for the energy stored in Electrostatic fields, state the units employed in each case.
(b) Given $\bar{J}=10^{3} \sin \theta \bar{a}_{\kappa} A / m^{2}$ in Spherical Co-ordinates, Find the current across the spherical shell $\mathrm{r}=0.02 \mathrm{~m}$.
6. (a) Find an expression for force and torque on closed circuits carrying current in the magnetic field.
(b) Two long parallel wires carrying $5,000 \mathrm{~A}$ and $10,000 \mathrm{~A}$ are separated by 1.5 m . Find the force between them. Derive the basic equation used for the calculation.
7. A uniform wire is bent into the form of a square of side 2 a and a current I flows round it. Prove that the magnetic field strength at a point on the perpendicular to the plane of the square through its centre and distance d from the plane is $\frac{2 I_{a}^{2}}{\pi\left(a^{2}+d^{2}\right) \sqrt{2 a^{2}+d^{2}}}$.
8. A parallel plate capacitor has a plate area of 1.5 Sq.m. and a plate separation of 5 mm . There are two dielectrics in between the plates. The first dielectric has a thickness of 3 mm with a relative permittivity of 6 and the second has a thickness of 2 mm with relative permittivity 4 . Find the capacitance. Derive the formula uses.

II B.Tech I Semester Examinations,November 2010 ELECTROMAGNETIC FIELDS
 Electrical And Electronics Engineering

Time: 3 hours

Answer any FIVE Questions
 All Questions carry equal marks

1. A uniform plane wave at 1 MHz travels in air in a direction that makes 30° with x-axis, 60° with Y-axis and 90° with Z-axis. It has a Z-directed electric field of magnitude $5 \mathrm{~V} / \mathrm{m}$. Express the electric and magnetic fields in vector form. [16]
2. What is the value of the E field at the surface of a flat conducting sheet which has placed on it a surface charge density of $\rho_{s}=10^{-2} \mathrm{C} / \mathrm{m}^{2}$.
3. Explain the Faradays disc generator and derive an expression for finding the unknown magnetic field.
4. A parallel plate capacitor has a plate area of 1.5 Sq.m. and a plate separation of 5 mm . There are two dielectrics in between the plates. The first dielectric has a thickness of 3 mm with a relative permittivity of 6 and the second has a thickness of 2 mm with relative permittivity 4. Find the capacitance. Derive the formula uses.
5. (a) Obtain an expression for the energy stored in Electrostatic fields, state the units employed in each case.
(b) Given $\bar{J}=10^{3} \sin \theta \bar{a}_{r} A / m^{2}$ in Spherical Co-ordinates, Find the current across the spherical shell $\mathrm{r}=0.02 \mathrm{~m}$.
$[8+8]$
6. (a) Find an expression for force and torque on closed circuits carrying current in the magnetic field.
(b) Two long parallel wires carrying 5,000 A and $10,000 \mathrm{~A}$ are separated by 1.5 m . Find the force between them. Derive the basic equation used for the calculation.
[8+8]
7. Derive an expression for energy density in a magnetic field and use this formula for computing energy density in a magnetic field having flux density equal to 1 Tesla.
8. A uniform wire is bent into the form of a square of side 2 a and a current I flows round it. Prove that the magnetic field strength at a point on the perpendicular to the plane of the square through its centre and distance d from the plane is $\frac{2 I_{a}^{2}}{\pi\left(a^{2}+d^{2}\right) \sqrt{2 a^{2}+d^{2}}}$.

II B.Tech I Semester Examinations,November 2010 ELECTROMAGNETIC FIELDS
 Electrical And Electronics Engineering

Time: 3 hours

Answer any FIVE Questions
 All Questions carry equal marks

1. Derive an expression for energy density in a magnetic field and use this formula for computing energy density in a magnetic field having flux density equal to 1 Tesla.
2. A parallel plate capacitor has a plate area of $1.5 \mathrm{Sq} . \mathrm{m}$. and a plate separation of 5 mm . There are two dielectrics in between the plates. The first dielectric has a thickness of 3 mm with a relative permittivity of 6 and the second has a thickness of 2 mm with relative permittivity 4 . Find the capacitance. Derive the formula uses.
3. A uniform wire is bent into the form of a square of side 2 a and a current I flows round it. Prove that the magnetic field strength at a point on the perpendicular to the plane of the square through its centre and distance d from the plane is $\frac{2 I_{a}^{2}}{\pi\left(a^{2}+d^{2}\right) \sqrt{2 a^{2}+d^{2}}}$.
4. (a) Obtain an expression for the energy stored in Electrostatic fields, state the units employed in each case.
(b) Given $\bar{J}=10^{3} \sin \theta \bar{a}_{r} A / m^{2}$ in Spherical Co-ordinates, Find the current across the spherical shell $\mathrm{r}=0.02 \mathrm{~m}$.
5. (a) Find an expression for force and torque on closed circuits carrying current in the magnetic field.
(b) Two long parallel wires carrying 5,000 A and 10,000 A are separated by 1.5 m . Find the force between them. Derive the basic equation used for the calculation.
6. Explain the Faradays disc generator and derive an expression for finding the unknown magnetic field.
7. A uniform plane wave at 1 MHz travels in air in a direction that makes 30° with x-axis, 60° with Y-axis and 90° with Z-axis. It has a Z-directed electric field of magnitude $5 \mathrm{~V} / \mathrm{m}$. Express the electric and magnetic fields in vector form. [16]
8. What is the value of the E field at the surface of a flat conducting sheet which has placed on it a surface charge density of $\rho_{s}=10^{-2} \mathrm{C} / \mathrm{m}^{2}$.

II B.Tech I Semester Examinations,November 2010 ELECTROMAGNETIC FIELDS
 Electrical And Electronics Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. A parallel plate capacitor has a plate area of 1.5 Sq.m. and a plate separation of 5 mm . There are two dielectrics in between the plates. The first dielectric has a thickness of 3 mm with a relative permittivity of 6 and the second has a thickness of 2 mm with relative permittivity 4 . Find the capacitance. Derive the formula uses.
2. (a) Obtain an expression for the energy stored in Electrostatic fields, state the units employed in each case.
(b) Given $\bar{J}=10^{3} \sin \theta \bar{a}_{r} A / m^{2}$ in Spherical Co-ordinates, Find the current across the spherical shell $\mathrm{r}=0.02 \mathrm{~m}$.
3. (a) Find an expression for force and torque on closed circuits carrying current in the magnetic field.
(b) Two long parallel wires carrying 5,000 A and 10,000 A are separated by 1.5 m . Find the force between them. Derive the basic equation used for the calculation.
4. A uniform wire is bent into the form of a square of side $2 a$ and a current I flows round it. Prove that the magnetic field strength at a point on the perpendicular to the plane of the square through its centre and distance d from the plane is $\frac{2 I_{a}^{2}}{\pi\left(a^{2}+d^{2}\right) \sqrt{2 a^{2}+d^{2}}}$.
5. What is the value of the E field at the surface of a flat conducting sheet which has placed on it a surface charge density of $\rho_{s}=10^{-2} \mathrm{C} / \mathrm{m}^{2}$.
6. Derive an expression for energy density in a magnetic field and use this formula for computing energy density in a magnetic field having flux density equal to 1 Tesla.
7. A uniform plane wave at 1 MHz travels in air in a direction that makes 30° with x-axis, 60° with Y-axis and 90° with Z-axis. It has a Z-directed electric field of magnitude $5 \mathrm{~V} / \mathrm{m}$. Express the electric and magnetic fields in vector form. [16]
8. Explain the Faradays disc generator and derive an expression for finding the unknown magnetic field.
