II B.Tech I Semester Examinations,November 2010 ELECTRICAL ENGINEERING Common to ME, CHEM, MECT, MEP, MMT

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) With a neat sketch, explain the operation of three point starter.
(b) If the load is removed from a dc series motor in operation, what wilt happen? $[12+4]$
2. uA moving coil instrument which given full scale deflection with 15 mA , has a copper coil having a resistance of 1.5Ω at $15^{\circ} \mathrm{C}$, and a temperature coefficient of $1 / 234.5$ at $0^{\circ} \mathrm{C}$ in series with a resistor of 3.5Ω having a negligible temp coefficient. Determine
(a) the resistance of shunt required for a full scaledeflection of 20 A and
(b) the resistance required for a full scale deflection of 250 v . If the instrument reads correctly at $15^{\circ} \mathrm{C}$, determine the percentage error in each case when the temperature is $25^{\circ} \mathrm{C}$.
3. (a) What are the assumptions made while calculating the regulation using synchronous impedance method.
(b) A 3- phase 50 Hz star connected $2000 \mathrm{KVA}, 2300 \mathrm{~V}$, alternator gives a short circuit current of 600 Amps for a certain field excitation. With the same excitation the OC Voltage was 900 V . The resistance between the pair of terminals was 0.12 Ohms. Find the $\%$ regulation at Half full load at
i. UPF
ii. 0.8 PF leading
iii. 0.9 PF lagging

$$
[6+10]
$$

4. (a) A shunt generator has a full load current of 196 A at 220 V . The stray losses are 720 W and the shunt field coil resistance is 550 hms . If it has a full load efficiency of 88%, find the armature resistance. Also find the load current corresponding to maximum efficiency.
(b) Long shunt compound wound generator gives 240 V at full load output of 100 A . Resistances of various windings of the machine are armature(including brush contact) 0.1 ohm , series field 0.02 ohm , interpole field 0.025 ohm , shunt field 100 ohms . The iron loss at full load is 1000 W . Windage and friction losses are 500 W . Calculate the full load efficiency of the machine.
$[8+8]$
5. (a) Define cycle, frequency, phase.
(b) An alternating current at frequency 60 Hz has a maximum value of 120 A . Write down the equation for its instantaneous value. Reckoning time from the instant the current zero and is becoming positive find
i. the instantaneous value after $1 / 360$ second and
ii. the time taken to reach 96A for the first time.

$$
[6+10]
$$

6. (a) Explain about "Dot convention" in the case of mutually coupled circuits.
(b) Explain briefly "How you can use mutual inductance principle to the transformer".
7. (a) Define regulation of a Transformer. How does it vary with the load current?
(b) Full load efficiency of a 4,000/400V, 40 KVA, Single Phase Transformer is 94% maximum efficiency occurs at 90% of the full-load: Find Iron loss and full-load copper loss of the Transformer. The load power factor being 0.8 lagging.

$$
[6+10]
$$

8. (a) Draw the torque slip characteristic and mark the operating region of the motor in regard to its safety.
(b) A 3- phase, 6 pole, 50 Hz induction motor has a slip of $\mathbf{1} \%$ at no load and 3% at full load. Find
i. Synchronous speed
ii. No load speed
iii. Full load speed
iv. Frequency of rotor current at standstill
v. Frequency of rotor current at full load.

$$
[6+10]
$$

II B.Tech I Semester Examinations,November 2010 ELECTRICAL ENGINEERING Common to ME, CHEM, MECT, MEP, MMT

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) With a neat sketch, explain the operation of three point starter.
(b) If the load is removed from a dc series motor in operation, what will happen? [12+4]
2. (a) Define cycle, frequency, phase.
(b) An alternating current at frequency 60 Hz has a maximum value of 120 A . Write down the equation for its instantaneous value. Reckoning time from the instant the current zero and is becoming positive find
i. the instantaneous value after $1 / 360$ second and
ii. the time taken to reach 96 A for the first time.

$$
[6+10]
$$

3. (a) A shunt generator has a fulload current of 196 A at 220 V . The stray losses are 720 W and the shunt field coil resistance is 550 hms . If it has a full load efficiency of 88%, find the armature resistance. Also find the load current corresponding to maximum efficiency.
(b) Long shunt compound wound generator gives 240 V at full load output of 100 A . Resistances of various windings of the machine are armature (including brush contact) 0.1 ohm , series field 0.02 ohm , interpole field 0.025 ohm , shunt field 100 oh ms. The iron loss at full load is 1000 W . Windage and friction losses are 500 W Calculate the full load efficiency of the machine. [8+8]
4. (a) Draw the torque slip characteristic and mark the operating region of the motor in regard to its safety.
(b) A 3- phase, 6 pole, 50 Hz induction motor has a slip of 1% at no load and 3% at full load. Find
i. Synchronous speed
ii. No load speed
iii. Full load speed
iv. Frequency of rotor current at standstill
v. Frequency of rotor current at full load.
5. (a) What are the assumptions made while calculating the regulation using synchronous impedance method.
(b) A 3- phase 50 Hz star connected $2000 \mathrm{KVA}, 2300 \mathrm{~V}$, alternator gives a short circuit current of 600 Amps for a certain field excitation. With the same excitation the OC Voltage was 900 V . The resistance between the pair of terminals was 0.12 Ohms . Find the \% regulation at Half full load at
i. UPF
ii. 0.8 PF leading
iii. 0.9 PF lagging
[6+10]
6. (a) Define regulation of a Transformer. How does it vary with the load current?
(b) Full load efficiency of a 4,000/400V, 40 KVA, Single Phase Transformer is 94% maximum efficiency occurs at 90% of the full-load: Find Iron loss and full-load copper loss of the Transformer. The load power factor being 0.8 lagging.

$$
[6+10]
$$

7. uA moving coil instrument which given full scale deflection with 15 mA , has a copper coil having a resistance of 1.5Ω at $15^{\circ} \mathrm{C}$, and a temperature coefficient of $1 / 234.5$ at $0^{0} \mathrm{C}$ in series with a resistor of 3.5Ω having a negligible temp coefficient. Determine
(a) the resistance of shunt required for a full scale deflection of 20A and
(b) the resistance required for a full scale deflection of 250 v . If the instrument reads correctly at $15^{\circ} \mathrm{C}$, determine the percentage error in each case when the temperature is $25^{\circ} \mathrm{C}$.
8. (a) Explain about "Dot convention" in the case of mutually coupled circuits.
(b) Explain briefly "How you can use mutual inductance principle to the transformer".
[8+8]

II B.Tech I Semester Examinations,November 2010 ELECTRICAL ENGINEERING Common to ME, CHEM, MECT, MEP, MMT
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) With a neat sketch, explain the operation of three point starter.
(b) If the load is removed from a dc series motor in operation, what will happen?

$$
[12+4]
$$

2. (a) What are the assumptions made while calculating the regulation using synchronous impedance method.
(b) A 3- phase 50 Hz star connected 2000 KVA , 2300 V , alternator gives a short circuit current of 600 Amps for a certain field excitation. With the same excitation the OC Voltage was 900 V . The resistance between the pair of terminals was 0.12 Ohms. Find the \% regulation at Half full load at
i. UPF
ii. 0.8PF leading
iii. 0.9 PF lagging

$$
[6+10]
$$

3. (a) Define cycle frequency, phase.
(b) An alternating current at frequency 60 Hz has a maximum value of 120 A . Write down the equation for its instantaneous value. Reckoning time from the instant the current zero and is becoming positive find
i. the instantaneous value after $1 / 360$ second and
ii. the time taken to reach 96A for the first time.

$$
[6+10]
$$

4. (a) Draw the torque slip characteristic and mark the operating region of the motor in regard to its safety.
(b) A 3- phase, 6 pole, 50 Hz induction motor has a slip of 1% at no load and 3% at full load. Find
i. Synchronous speed
ii. No load speed
iii. Full load speed
iv. Frequency of rotor current at standstill
v. Frequency of rotor current at full load.
5. uA moving coil instrument which given full scale deflection with 15 mA , has a copper coil having a resistance of 1.5Ω at $15^{\circ} \mathrm{C}$, and a temperature coefficient of $1 / 234.5$ at $0^{0} \mathrm{C}$ in series with a resistor of 3.5Ω having a negligible temp coefficient. Determine
(a) the resistance of shunt required for a full scale deflection of 20 A and
(b) the resistance required for a full scale deflection of 250 v . If the instrument reads correctly at $15^{\circ} \mathrm{C}$, determine the percentage error in each case when the temperature is $25^{\circ} \mathrm{C}$.
6. (a) Define regulation of a Transformer. How does it vary with the load current?
(b) Full load efficiency of a 4,000/400V, 40 KVA, Single Phase Transformer is 94% maximum efficiency occurs at 90% of the full-load: Find Iron loss and full-load copper loss of the Transformer. The load power factor being 0.8 lagging.
7. (a) A shunt generator has a full load current of 196 A at 220 V . The stray losses are 720 W and the shunt field coil resistance is 550 hms . If it has a full load efficiency of 88%, find the armature resistance. Also find the load current corresponding to maximum efficiency.
(b) Long shunt compound wound generator gives 240 V at full load ont put of 100 A . Resistances of various windings of the machine are armature including brush contact) 0.1 ohm , series field 0.02 ohm , interpole field 0.025 ohm , shunt field 100 ohms . The iron loss at full load is 1000 W . Windage and friction losses are 500 W . Calculate the full load efficiency of the machine. [8+8]
8. (a) Explain about "Dot convention" in the case of mutually coupled circuits.
(b) Explain briefly "How you can use mutual inductance principle to the transformer".

II B.Tech I Semester Examinations,November 2010 ELECTRICAL ENGINEERING Common to ME, CHEM, MECT, MEP, MMT

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. uA moving coil instrument which given full scale deflection with 15 mA , has a copper coil having a resistance of 1.5Ω at $15^{\circ} \mathrm{C}$, and a temperature coefficient of $1 / 234.5$ at $0^{\circ} \mathrm{C}$ in series with a resistor of 3.5Ω having a negligible temp coefficient. Determine
(a) the resistance of shunt required for a full scale deflection of 20A and
(b) the resistance required for a full scale deflection of 250 v . If the instrument reads correctly at $15^{\circ} \mathrm{C}$, determine the percentage erron in each case when the temperature is $25^{\circ} \mathrm{C}$.
[16]
2. (a) A shunt generator has a full load current of 196 A at 220 V . The stray losses are 720 W and the shunt field coil resistance is 550 hms . If it has a full load efficiency of 88%, find the armature resistance. Also find the load current corresponding to maximum efficiency.
(b) Long shunt compound wound generator gives 240 V at full load output of 100A. Resistances of various windings of the machine are armature (including brush contact) 0.10 hm , series field 0.02 ohm , interpole field 0.025 ohm , shunt field 100 ohms . The ron loss at full load is 1000 W . Windage and friction losses are 5001 . Calculate the full load efficiency of the machine.
3. (a) What are the assumptions made while calculating the regulation using synchronous impedance method.
(b) A 3- phase 50 Hz star connected $2000 \mathrm{KVA}, 2300 \mathrm{~V}$, alternator gives a short circuit current of 600 Amps for a certain field excitation. With the same excitation the OC Voltage was 900 V . The resistance between the pair of terminals was 0.12 Ohms. Find the $\%$ regulation at Half full load at
i. UPF
ii. 0.8PF leading
iii. 0.9 PF lagging
[6+10]
4. (a) Draw the torque slip characteristic and mark the operating region of the motor in regard to its safety.
(b) A 3- phase, 6 pole, 50 Hz induction motor has a slip of 1% at no load and 3% at full load. Find
i. Synchronous speed
ii. No load speed
iii. Full load speed
iv. Frequency of rotor current at standstill
v. Frequency of rotor current at full load.
5. (a) With a neat sketch, explain the operation of three point starter.
(b) If the load is removed from a dc series motor in operation, what will happen?

$$
[12+4]
$$

6. (a) Define regulation of a Transformer. How does it vary with the load current?
(b) Full load efficiency of a 4,000/400V, 40 KVA, Single Phase Transformer is 94% maximum efficiency occurs at 90% of the full-load: Find Iron loss and full-load copper loss of the Transformer. The load power factor being 0.8 lagging.

$$
[6+10]
$$

7. (a) Define cycle, frequency, phase.
(b) An alternating current at frequency 60 Hz has a maximum value of 120 A . Write down the equation for its instantaneous value. Reckoning time from the instant the current zero and is becoming positive find
i. the instantaneous value after $1 / 360$ second and
ii. the time taken to reach 96A for the first time.
8. (a) Explain about "Dot convention" in the case of mutually coupled circuits.
(b) Explain briefly "How you can use mutual inductance principle to the transformer".
