\mathbf{RR}

II B.Tech I Semester Examinations, November 2010 THERMODYNAMICS

Common to Mechanical Engineering, Automobile Engineering Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. One kg of gas at pressure $825KN/m^2$ and temperature 327^{0} C expands to pressure $90KN/m^2$ until the volume becomes five times the initial volume according to the law $pv^n = C$. Determine
 - (a) the value of index
 - (b) Work done

Code No: RR210304

- (c) Heat transferred
- (d) Change in internal energy.
- 2. Starting from first law and using second law derive the Gibb's equations and hence deduce the Maxwell's relations. [16]
- 3. Air has a dry bulb temperature of 27^{0} C and a wet bulb temperature of 20^{0} C. If the barometer reads 1 bar, Calculate
 - (a) the humidity ratio
 - (b) the relative humidity
 - (c) the dew point
 - (d) the enthalpy of mixture per kg of dry air.
- 4. A simple saturation cycle using R-22 is designed for a load of 100 TR. The saturated suction and discharge temperatures are 5^oC and 40^oC respectively. Calculate
 - (a) The mass flow rate of refrigerant
 - (b) The C.O.P. and isentropic horsepower.
 - (c) The heat rejected in the condenser. Use the following data:

t	Р	h _l	hg	S_l	Sg	Vg
⁰ C	bar	$\mathrm{K}J\!/\mathrm{Kg}$	$\mathrm{KJ/Kg}$	$\mathrm{KJ}/\mathrm{Kg}~\mathrm{K}$	$\mathrm{KJ}/\mathrm{Kg}~\mathrm{K}$	$m^3/{ m Kg}$
5	5.836	205.9	407.1	1.02115	1.7447	0.0404
40	15.331	249.53	416.4	1.16659	1.69953	

Specific heat of vapor is 0.65 KJ/Kg K.

[16]

[16]

[16]

Code No: RR210304

5. (a) Define mean effective pressure. What is its importance in reciprocating engines.

RR

(b) A diesel cycle operating on an air standard cycle has a compression ratio at 15. The pressure and temperature at the beginning of the compression are 1.04 bar and 15^o C. If the maximum temperature of the cycle is 233^oC, determine

Set No. 2

[6+10]

[16]

[16]

- i. the thermal efficiency and
- ii. The mean effective pressure.
- 6. (a) Differentiate between Microscopic and Macroscopic point of view.
 - (b) Prove that the difference between specific heat at constant pressure and specific heat at constant volume is gas constant.
 - (c) Explain what do you mean by thermal equilibrium. [4+6+6]
- 7. A mass of air is initially at 260° C and 7 bar, and occupies $0.028m^3$. The air is expanded at constant pressure to $0.084m^3$. A polytropic process with n=1.5 is then carried out, followed by a constant temperature process which completes a cycle. All the processes are reversible.
 - (a) Sketch the cycle in a p-v & T-s planes,
 - (b) find the heat received and the heat rejected in the cycle, and
 - (c) find the efficiency of the cycle.
- 8. Air is compressed from a pressure of 1 bar and a temperature of 21^oC to a pressure of 2 bar and temperature of 38^oC. For this process determine
 - (a) change in entropy
 - (b) whether heat is added or removed or is it zero
 - (c) Also calculate the final temperature if the process were isentropic
 - (d) Sketch process for part (c) on a T-s plane

 \mathbf{RR}

II B.Tech I Semester Examinations, November 2010 THERMODYNAMICS

Common to Mechanical Engineering, Automobile Engineering Time: 3 hours

Max Marks: 80

[16]

[16]

Answer any FIVE Questions All Questions carry equal marks

- 1. Starting from first law and using second law derive the Gibb's equations and hence deduce the Maxwell's relations. [16]
- 2. Air is compressed from a pressure of 1 bar and a temperature of 21° C to a pressure of 2 bar and temperature of 38° C. For this process determine
 - (a) change in entropy

Code No: RR210304

- (b) whether heat is added or removed or is it zero
- (c) Also calculate the final temperature if the process were isentropic
- (d) Sketch process for part (c) on a T-s plane [16]
- 3. Air has a dry bulb temperature of 27° C and a wet bulb temperature of 20° C. If the barometer reads 1 bar, Calculate
 - (a) the humidity ratio
 - (b) the relative humidity
 - (c) the dew point
 - (d) the enthalpy of mixture per kg of dry air.
- 4. (a) Differentiate between Microscopic and Macroscopic point of view.
 - (b) Prove that the difference between specific heat at constant pressure and specific heat at constant volume is gas constant.
 - (c) Explain what do you mean by thermal equilibrium. [4+6+6]
- 5. A mass of air is initially at 260° C and 7 bar, and occupies $0.028m^3$. The air is expanded at constant pressure to $0.084m^3$. A polytropic process with n=1.5 is then carried out, followed by a constant temperature process which completes a cycle. All the processes are reversible.
 - (a) Sketch the cycle in a p-v & T-s planes,
 - (b) find the heat received and the heat rejected in the cycle, and
 - (c) find the efficiency of the cycle.
- 6. (a) Define mean effective pressure. What is its importance in reciprocating engines.

www.firstranker.com

www.firstranker.com

4

\mathbf{RR}

- (b) A diesel cycle operating on an air standard cycle has a compression ratio at 15. The pressure and temperature at the beginning of the compression are 1.04 bar and 15° C. If the maximum temperature of the cycle is 233° c determine
 - i. the thermal efficiency and
 - ii. The mean effective pressure.
- 7. One kg of gas at pressure $825KN/m^2$ and temperature 327^{0} C expands to pressure $90KN/m^2$ until the volume becomes five times the initial volume according to the law $pv^n = C$. Determine
 - (a) the value of index
 - (b) Work done

Code No: RR210304

- (c) Heat transferred
- (d) Change in internal energy.
- 8. A simple saturation cycle using R-22 is designed for a load of 100 TR. The saturated suction and discharge temperatures are 5^{0} C and 40^{0} C respectively. Calculate
 - (a) The mass flow rate of refrigerant
 - (b) The C.O.P. and isentropic horsepower.
 - (c) The heat rejected in the condenser. Use the following data:

t	Р	h	hg	Sl	Sg	Vg
⁰ C	bar	K J /Kg	$\mathrm{KJ/Kg}$	$\mathrm{KJ}/\mathrm{Kg}~\mathrm{K}$	$\mathrm{KJ}/\mathrm{Kg}~\mathrm{K}$	$m^3/{ m Kg}$
5	5.836	205.9	407.1	1.02115	1.7447	0.0404
40	15.331	249.53	416.4	1.16659	1.69953	

Specific heat of vapor is 0.65 KJ/Kg K.

[16]

[16]

[6+10]

Set No. 4

 \mathbf{RR}

II B.Tech I Semester Examinations, November 2010 THERMODYNAMICS

Common to Mechanical Engineering, Automobile Engineering Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- *****
- 1. One kg of gas at pressure $825KN/m^2$ and temperature 327^{0} C expands to pressure $90KN/m^2$ until the volume becomes five times the initial volume according to the law $pv^{n} = C$. Determine
 - (a) the value of index
 - (b) Work done

Code No: RR210304

- (c) Heat transferred
- (d) Change in internal energy.
- 2. (a) Define mean effective pressure. What is its importance in reciprocating engines.
 - (b) A diesel cycle operating on an air standard cycle has a compression ratio at 15. The pressure and temperature at the beginning of the compression are 1.04 bar and 15^0 C. If the maximum temperature of the cycle is 233, determine
 - i. the thermal efficiency and
 - ii. The mean effective pressure. [6+10]
- 3. A simple saturation cycle using R-22 is designed for a load of 100 TR. The saturated suction and discharge temperatures are 5^{0} C and 40^{0} C respectively. Calculate
 - (a) The mass flow rate of refrigerant
 - (b) The C.O.P. and isentropic horsepower.
 - (c) The heat rejected in the condenser. Use the following data:

t	Р	h _l	hg	Sl	Sg	Vg
⁰ C	bar	$\mathrm{K}\mathbf{J}/\mathrm{Kg}$	KJ/Kg	$\mathrm{KJ}/\mathrm{Kg}~\mathrm{K}$	$\mathrm{KJ}/\mathrm{Kg}~\mathrm{K}$	$m^3/{ m Kg}$
5	5.836	205.9	407.1	1.02115	1.7447	0.0404
40	15.331	249.53	416.4	1.16659	1.69953	

Specific heat of vapor is 0.65 KJ/Kg K.

[16]

[16]

www.firstranker.com

\mathbf{RR}

Set No. 1

[16]

[16]

- 4. A mass of air is initially at 260° C and 7 bar, and occupies $0.028m^3$. The air is expanded at constant pressure to $0.084m^3$. A polytropic process with n=1.5 is then carried out, followed by a constant temperature process which completes a cycle. All the processes are reversible.
 - (a) Sketch the cycle in a p-v & T-s planes,
 - (b) find the heat received and the heat rejected in the cycle, and
 - (c) find the efficiency of the cycle.
- 5. Air has a dry bulb temperature of 27°C and a wet bulb temperature of 20°C. If the barometer reads 1 bar, Calculate
 - (a) the humidity ratio
 - (b) the relative humidity
 - (c) the dew point

Code No: RR210304

- (d) the enthalpy of mixture per kg of dry air.
- 6. Air is compressed from a pressure of 1 bar and a temperature of 21° C to a pressure of 2 bar and temperature of 38° C. For this process determine
 - (a) change in entropy
 - (b) whether heat is added or removed or is it zero
 - (c) Also calculate the final temperature if the process were isentropic
 - (d) Sketch process for part (c) on a T-s plane [16]
- 7. Starting from first law and using second law derive the Gibb's equations and hence deduce the Maxwell's relations. [16]
- 8. (a) Differentiate between Microscopic and Macroscopic point of view.
 - (b) Prove that the difference between specific heat at constant pressure and specific heat at constant volume is gas constant.
 - (c) Explain what do you mean by thermal equilibrium. [4+6+6]

 \mathbf{RR}

II B.Tech I Semester Examinations, November 2010 THERMODYNAMICS

Common to Mechanical Engineering, Automobile Engineering Max Marks: 80

Time: 3 hours

Code No: RR210304

Answer any FIVE Questions All Questions carry equal marks

- 1. Air is compressed from a pressure of 1 bar and a temperature of 21° C to a pressure of 2 bar and temperature of 38° C. For this process determine
 - (a) change in entropy
 - (b) whether heat is added or removed or is it zero
 - (c) Also calculate the final temperature if the process were isentropic
 - (d) Sketch process for part (c) on a T-s plane
- 2. A mass of air is initially at 260° C and 7 bar, and occupies $0.028m^3$. The air is expanded at constant pressure to $0.084m^3$. A polytropic process with n=1.5 is then carried out, followed by a constant temperature process which completes a cycle. All the processes are reversible.
 - (a) Sketch the cycle in a p-v & T-s planes,
 - (b) find the heat received and the heat rejected in the cycle, and
 - (c) find the efficiency of the cycle. [16]
- 3. A simple saturation cycle using R-22 is designed for a load of 100 TR. The saturated suction and discharge temperatures are 5^{0} C and 40^{0} C respectively. Calculate
 - (a) The mass flow rate of refrigerant
 - (b) The C.O.P. and isentropic horsepower.
 - (c) The heat rejected in the condenser. Use the following data:

t	Р	hı	hg	Sl	Sg	Vg
⁰ C	bar	$\mathrm{K} J/\mathrm{Kg}$	$\mathrm{KJ/Kg}$	${\rm KJ/Kg}~{\rm K}$	${\rm KJ/Kg}~{\rm K}$	$m^3/{ m Kg}$
5	5.836	205.9	407.1	1.02115	1.7447	0.0404
40	15.331	249.53	416.4	1.16659	1.69953	

Specific heat of vapor is 0.65 KJ/Kg K.

4. (a) Differentiate between Microscopic and Macroscopic point of view.

www.firstranker.com

[16]

[16]

Code No: RR210304

(b) Prove that the difference between specific heat at constant pressure and specific heat at constant volume is gas constant.

 \mathbf{RR}

Set No. 3

[6+10]

[16]

[16]

- (c) Explain what do you mean by thermal equilibrium. [4+6+6]
- 5. (a) Define mean effective pressure. What is its importance in reciprocating engines.
 - (b) A diesel cycle operating on an air standard cycle has a compression ratio at 15. The pressure and temperature at the beginning of the compression are 1.04 bar and 15^o C. If the maximum temperature of the cycle is 233^oC, determine
 - i. the thermal efficiency and
 - ii. The mean effective pressure.
- 6. Starting from first law and using second law derive the Gibb's equations and hence deduce the Maxwell's relations. [16]
- 7. One kg of gas at pressure $825KN/m^2$ and temperature 327^0 C expands to pressure $90KN/m^2$ until the volume becomes five times the initial volume according to the law $pv^n = C$. Determine
 - (a) the value of index
 - (b) Work done
 - (c) Heat transferred
 - (d) Change in internal energy
- 8. Air has a dry bulb temperature of 27° C and a wet bulb temperature of 20° C. If the barometer reads 1 bar, Calculate
 - (a) the humidity ratio
 - (b) the relative humidity
 - (c) the dew point
 - (d) the enthalpy of mixture per kg of dry air.

8