II B.Tech I Semester Examinations,November 2010 THERMODYNAMICS

Common to Mechanical Engineering, Automobile Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. One kg of gas at pressure $825 \mathrm{KN} / \mathrm{m}^{2}$ and temperature $327^{\circ} \mathrm{C}$ expands to pressure $90 \mathrm{KN} / \mathrm{m}^{2}$ until the volume becomes five times the initial volume according to the law $p v^{n}=\mathrm{C}$. Determine
(a) the value of index
(b) Work done
(c) Heat transferred
(d) Change in internal energy.
2. Starting from first law and using second law derive the Gibb's equations and hence deduce the Maxwell's relations.
3. Air has a dry bulb temperature of $27^{\circ} \mathrm{C}$ and a wet bulb temperature of $20^{\circ} \mathrm{C}$. If the barometer reads 1 bar, Catculate
(a) the humidity ratio
(b) the relative humidity
(c) the lew point
(d) the enthalpy of mixture per kg of dry air.
4. A simple saturation cycle using R-22 is designed for a load of 100 TR. The saturated suction and discharge temperatures are $5^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively. Calculate
(a) The mass flow rate of refrigerant
(b) The C.O.P. and isentropic horsepower.
(c) The heat rejected in the condenser. Use the following data:

t	P	$\mathrm{h}_{\boldsymbol{l}}$	$\mathrm{h}_{\mathbf{g}}$	$\mathrm{S}_{\boldsymbol{l}}$	S_{g}	Vg^{\prime}
${ }^{\mathbf{0}} \mathrm{C}$	bar	$\mathrm{KJ} / \mathrm{Kg}$	$\mathrm{KJ} / \mathrm{Kg}$	$\mathrm{KJ} / \mathrm{Kg} \mathrm{K}$	$\mathrm{KJ} / \mathrm{Kg} \mathrm{K}$	$\mathrm{m}^{3} / \mathrm{Kg}$
5	5.836	205.9	407.1	1.02115	1.7447	0.0404
40	15.331	249.53	416.4	1.16659	1.69953	

Specific heat of vapor is $0.65 \mathrm{KJ} / \mathrm{Kg} \mathrm{K}$.
5. (a) Define mean effective pressure. What is its importance in reciprocating engines.
(b) A diesel cycle operating on an air standard cycle has a compression ratio at 15. The pressure and temperature at the beginning of the compression are 1.04 bar and $15^{0} \mathrm{C}$. If the maximum temperature of the cycle is $233^{\circ} \mathrm{C}$, determine
i. the thermal efficiency and
ii. The mean effective pressure.

$$
[6+10]
$$

6. (a) Differentiate between Microscopic and Macroscopic point of view.
(b) Prove that the difference between specific heat at constant pressure and specific heat at constant volume is gas constant.
(c) Explain what do you mean by thermal equilibrium.
7. A mass of air is initially at $260^{\circ} \mathrm{C}$ and 7 bar, and occupies $0.028 \mathrm{~m}^{3}$. The air is expanded at constant pressure to $0.084 \mathrm{~m}^{3}$. A polytropic process with $\mathrm{n}=1.5$ is then carried out, followed by a constant temperature process which completes a cycle. All the processes are reversible.
(a) Sketch the cycle in a p-v \& T-s planes,
(b) find the heat received and the heat rejected in the cycle, and
(c) find the efficiency of the cycle.
8. Air is compressed from a pressure of 1 bar and a temperature of $21^{\circ} \mathrm{C}$ to a pressure of 2 bar and temperature $38^{\circ} \mathrm{C}$. For this process determine
(a) change in entropy
(b) whether heat is added or removed or is it zero
(c) Also calculate the final temperature if the process were isentropic
(d) Sketch process for part (c) on a T-s plane

II B.Tech I Semester Examinations,November 2010 THERMODYNAMICS

Common to Mechanical Engineering, Automobile Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Starting from first law and using second law derive the Gibb's equations and hence deduce the Maxwell's relations.
2. Air is compressed from a pressure of 1 bar and a temperature of $21^{\circ} \mathrm{C}$ to a pressure of 2 bar and temperature of $38^{\circ} \mathrm{C}$. For this process determine
(a) change in entropy
(b) whether heat is added or removed or is it zero
(c) Also calculate the final temperature if the process were isentropic
(d) Sketch process for part (c) on a T-s plane
3. Air has a dry bulb temperature of $27^{\circ} \mathrm{C}$ and a wet bulb temperature of $20^{\circ} \mathrm{C}$. If the barometer reads 1 bar, Calculate
(a) the humidity ratio
(b) the relative humidity
(c) the dew point
(d) the enthalpy of mixture per kg of dry air.
4. (a) Differentiate between Microscopic and Macroscopic point of view.
(b) Prove that the difference between specific heat at constant pressure and specific heat at constant volume is gas constant.
(c) Explain what do you mean by thermal equilibrium.

$$
[4+6+6]
$$

5. A mass of air is initially at $260^{\circ} \mathrm{C}$ and 7 bar, and occupies $0.028 \mathrm{~m}^{3}$. The air is expanded at constant pressure to $0.084 m^{3}$. A polytropic process with $\mathrm{n}=1.5$ is then carried out, followed by a constant temperature process which completes a cycle. All the processes are reversible.
(a) Sketch the cycle in a p-v \& T-s planes,
(b) find the heat received and the heat rejected in the cycle, and
(c) find the efficiency of the cycle.
6. (a) Define mean effective pressure. What is its importance in reciprocating engines.
(b) A diesel cycle operating on an air standard cycle has a compression ratio at 15. The pressure and temperature at the beginning of the compression are 1.04 bar and $15^{0} \mathrm{C}$. If the maximum temperature of the cycle is $233^{\circ} \mathrm{C}$ determine
i. the thermal efficiency and
ii. The mean effective pressure.

$$
[6+10]
$$

7. One kg of gas at pressure $825 \mathrm{KN} / \mathrm{m}^{2}$ and temperature $327^{\circ} \mathrm{C}$ expands to pressure $90 \mathrm{KN} / \mathrm{m}^{2}$ until the volume becomes five times the initial volume according to the law $p v^{n}=\mathrm{C}$. Determine
(a) the value of index
(b) Work done
(c) Heat transferred
(d) Change in internal energy.
8. A simple saturation cycle using R-22 is designed for a load of 100 TR . The saturated suction and discharge temperatures are $5^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively. Calculate
(a) The mass flow rate of refrigerant
(b) The C.O.P. and isentropic horsepower.
(c) The heat rejected in the condenser. Use the following data:

| t | P^{2} | $\mathrm{~h}_{\boldsymbol{\prime}}$ | hg_{g} | $\mathrm{S}_{\boldsymbol{l}}$ | S_{g} | Vg |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{0} \mathrm{C}$ | bar | $\mathrm{KJ} / \mathrm{Kg}$ | $\mathrm{KJ} / \mathrm{Kg}$ | $\mathrm{KJ} / \mathrm{Kg} \mathrm{K}$ | $\mathrm{KJ} / \mathrm{Kg} \mathrm{K}$ | m^{3} / Kg |
| 5 | 5.836 | 205.9 | 407.1 | 1.02115 | 1.7447 | 0.0404 |
| 40 | 15.331 | 249.53 | 416.4 | 1.16659 | 1.69953 | |

Specific heat of vapor is $0.65 \mathrm{KJ} / \mathrm{Kg} \mathrm{K}$.

II B.Tech I Semester Examinations,November 2010 THERMODYNAMICS

Common to Mechanical Engineering, Automobile Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. One kg of gas at pressure $825 \mathrm{KN} / \mathrm{m}^{2}$ and temperature $327^{\circ} \mathrm{C}$ expands to pressure $90 \mathrm{KN} / \mathrm{m}^{2}$ until the volume becomes five times the initial volume according to the law $p v^{n}=\mathrm{C}$. Determine
(a) the value of index
(b) Work done
(c) Heat transferred
(d) Change in internal energy.
2. (a) Define mean effective pressure. What is its importance in reciprocating engines.
(b) A diesel cycle operating on an air standard cycle has a compression ratio at 15. The pressure and temperature at the beginning of the compression are 1.04 bar and $15^{\circ} \mathrm{C}$. If the maximum temperature of the cycle is 233 , determine
i. the thermal efficiency and
ii. The mean effective pressure.

$$
[6+10]
$$

3. A simple saturation cycle using R-22 is designed for a load of 100 TR . The saturated suction and discharge temperatures are $5^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively. Calculate
(a) The mass flow rate of refrigerant
(b) The C.O.P. and isentropic horsepower.
(c) The heat rejected in the condenser. Use the following data:

t	P	$\mathrm{h}_{\boldsymbol{l}}$	hg	$\mathrm{S}_{\boldsymbol{l}}$	S_{g}	vg
${ }^{0} \mathrm{C}$	bar	$\mathrm{KJ} / \mathrm{Kg}$	$\mathrm{KJ} / \mathrm{Kg}$	$\mathrm{KJ} / \mathrm{Kg} \mathrm{K}$	$\mathrm{KJ} / \mathrm{Kg} \mathrm{K}$	$\mathrm{m}^{3} / \mathrm{Kg}$
5	5.836	205.9	407.1	1.02115	1.7447	0.0404
40	15.331	249.53	416.4	1.16659	1.69953	

Specific heat of vapor is $0.65 \mathrm{KJ} / \mathrm{Kg} \mathrm{K}$.
4. A mass of air is initially at $260^{\circ} \mathrm{C}$ and 7 bar, and occupies $0.028 \mathrm{~m}^{3}$. The air is expanded at constant pressure to $0.084 m^{3}$. A polytropic process with $n=1.5$ is then carried out, followed by a constant temperature process which completes a cycle. All the processes are reversible.
(a) Sketch the cycle in a p-v \& T-s planes,
(b) find the heat received and the heat rejected in the cycle, and
(c) find the efficiency of the cycle.
5. Air has a dry bulb temperature of $27^{\circ} \mathrm{C}$ and a wet bulb temperature of $20^{\circ} \mathrm{C}$. If the barometer reads 1 bar, Calculate
(a) the humidity ratio
(b) the relative humidity
(c) the dew point
(d) the enthalpy of mixture per kg of dry air.
6. Air is compressed from a pressure of 1 bar and a temperature of $21^{\circ} \mathrm{C}$ to a pressure of 2 bar and temperature of $38^{\circ} \mathrm{C}$. For this process đetermine
(a) change in entropy
(b) whether heat is added or removed or is it zero
(c) Also calculate the finat temperature if the process were isentropic
(d) Sketch process for part (c) on a T-s plane
7. Starting from first law and using second law derive the Gibb's equations and hence deduce the Maxwell's relations.
8. (a) Differentiate between Microscopic and Macroscopic point of view.
(b) Prove that the difference between specific heat at constant pressure and specific heat at constant volume is gas constant.
(c) Explain what do you mean by thermal equilibrium.

$$
[4+6+6]
$$

II B.Tech I Semester Examinations,November 2010 THERMODYNAMICS

Common to Mechanical Engineering, Automobile Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Air is compressed from a pressure of 1 bar and a temperature of $21^{\circ} \mathrm{C}$ to a pressure of 2 bar and temperature of $38^{\circ} \mathrm{C}$. For this process determine
(a) change in entropy
(b) whether heat is added or removed or is it zero
(c) Also calculate the final temperature if the process were isentropic
(d) Sketch process for part (c) on a T-s plane
2. A mass of air is initially at $260^{\circ} \mathrm{C}$ and 7 bar and occupies $0.028 \mathrm{~m}^{3}$. The air is expanded at constant pressure to $0.084 \mathrm{~m}^{3}$. A polytropic process with $\mathrm{n}=1.5$ is then carried out, followed by a constant temperature process which completes a cycle. All the processes are reversible
(a) Sketch the cycle in a p-r \& T-s planes,
(b) find the heat received and the heat rejected in the cycle, and
(c) find the efficiency of the cycle.
3. A simple saturation cycle using R-22 is designed for a load of 100 TR. The saturated suction and discrarge temperatures are $5^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively. Calculate
(a) The mass flow rate of refrigerant
(b) The C.O.P. and isentropic horsepower.
(c) The heat rejected in the condenser. Use the following data:

t	P	$\mathrm{h}_{\boldsymbol{l}}$	hg	$\mathrm{S}_{\boldsymbol{l}}$	$\mathrm{S}_{\mathbf{g}}$	$\mathrm{V}_{\mathbf{g}}$
${ }^{0} \mathrm{C}$	bar	$\mathrm{KJ} / \mathrm{Kg}$	$\mathrm{KJ} / \mathrm{Kg}$	$\mathrm{KJ} / \mathrm{Kg} \mathrm{K}$	$\mathrm{KJ} / \mathrm{Kg} \mathrm{K}$	$\mathrm{m}^{3} / \mathrm{Kg}$
5	5.836	205.9	407.1	1.02115	1.7447	0.0404
40	15.331	249.53	416.4	1.16659	1.69953	

Specific heat of vapor is $0.65 \mathrm{KJ} / \mathrm{Kg} \mathrm{K}$.
4. (a) Differentiate between Microscopic and Macroscopic point of view.
(b) Prove that the difference between specific heat at constant pressure and specific heat at constant volume is gas constant.
(c) Explain what do you mean by thermal equilibrium.
$[4+6+6]$
5. (a) Define mean effective pressure. What is its importance in reciprocating engines.
(b) A diesel cycle operating on an air standard cycle has a compression ratio at 15. The pressure and temperature at the beginning of the compression are 1.04 bar and $15^{\circ} \mathrm{C}$. If the maximum temperature of the cycle is $233^{\circ} \mathrm{C}$, determine
i. the thermal efficiency and
ii. The mean effective pressure.

$$
[6+10]
$$

6. Starting from first law and using second law derive the Gibb's equations and hence deduce the Maxwell's relations.
7. One kg of gas at pressure $825 \mathrm{KN} / \mathrm{m}^{2}$ and temperature $327^{\circ} \mathrm{C}$ expands to pressure $90 \mathrm{KN} / \mathrm{m}^{2}$ until the volume becomes five times the initial volume according to the law $p v^{n}=\mathrm{C}$. Determine
(a) the value of index
(b) Work done
(c) Heat transferred
(d) Change in internal energy.
8. Air has a dry bulb temperature of $27^{\circ} \mathrm{C}$ and a wet bulb temperature of $20^{\circ} \mathrm{C}$. If the barometer reads 1 bar, Calculate
(a) the humidity ratio
(b) the relative humidity
(c) the dew point
(d) the enthalpy of mixture per kg of dry air.
