II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) If A and B are any events, not necessarily mutually exclusive events, derive an expression for probability of A Union B. When A and B are mutually exclusive, what happens to the above expression derived?
(b) Define the term Independent events. State the conditions for independence of i. any two events A and B.
ii. any three events A, B and C.
(c) A coin is tossed. If it turns up heads, two balls will be drawn from box A, otherwise, two balls will be drawn from box B. Box A contains three black and five white balls. Box B contams seven black and one white balls. In both cases, selections are to be made with replacement. What is the probability that Box A is used, given that both balls drawn are black?
2. (a) Find the channel capacity of BSC as shown in figure5a.

Figure 5a
(b) Show that in general $\mathrm{H}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots \ldots . . \mathrm{x}_{n}\right) \leq \sum_{i=1}^{n} H\left(x_{i}\right)$

When does the equality hold?
3. The Rayleigh density function is given by

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})=\mathrm{x} \mathrm{e}^{-\mathrm{x}^{2} / 2 \quad \mathrm{x} \geq 0} \\
=0 x<0
\end{gathered}
$$

(a) Prove that $f(x)$ satisfies the properties of the p.d.f.
i. $f(x) \geq 0$ for all x and
ii. $\int_{\infty}^{\infty} f(x) d x=1$
(b) Find the distribution function $\mathrm{F}(\mathrm{x})$
(c) Find $\mathrm{P}(0.5<\mathrm{x} \leq 2)$
(d) Find $\mathrm{P}(0.5 \leq \mathrm{x}<2)$.
4. White noise $\mathrm{n}(\mathrm{t})$ with $P S D=\frac{n}{2}$ is passed through a low pass RC network with a 3 db frequency f_{c}.
(a) Find the auto correlation $\mathrm{R}(\tau)$ of the o / p noise of the network.
(b) Sketch $\rho(t)=\frac{R(\tau)}{R(o)}$

$$
[12+4]
$$

5. (a) Prove that PSD and Auto correlation function of Randon process form a fourier transform pair.
(b) A random process has the power density spectrum $S_{x x}(\omega)=\frac{6 \omega^{2}}{1+\omega^{4}}$ Find the average power in the process.

$$
[8+8]
$$

6. (a) Find the noise bandwidth of a parallel RLC filter with 3db bandwidth B.
(b) Write short notes on "Available gain of two port network".
7. (a) What are the precautions to be taken in cascading stages of a network in the point of view of noise reduction?
(b) What is the need for band limiting the signal towards the direction increasing SNR.
8. (a) Prove that mean is ' m ' and variance is σ^{2} for Gaussian distribution function.
(b) Find the moment generating and Characteristic function of the random variable X which has uniform distribution.
[8+8]

II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

* * * *

1. The Rayleigh density function is given by

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})=\mathrm{x} \mathrm{e}^{-\mathrm{x}^{2} / 2 \quad \mathrm{x} \geq 0} \\
=0 x<0
\end{gathered}
$$

(a) Prove that $\mathrm{f}(\mathrm{x})$ satisfies the properties of the p.d.f.
i. $\mathrm{f}(\mathrm{x}) \geq 0$ for all x and
ii. $\int_{\infty}^{\infty} f(x) d x=1$
(b) Find the distribution function F (x)
(c) Find $\mathrm{P}(0.5<\mathrm{x} \leq 2)$
(d) Find $\mathrm{P}(0.5 \leq \mathrm{x}<2)$.
2. (a) If A and B are any events, not necessarily mutually exclusive events, derive an expression for probability of A Union B. When A and B are mutually exclusive, what happens to the above expression derived?
(b) Define the term Independent events. State the conditions for independence of
i. any two events A and B .
ii. any three events A, B and C.
(c) A coin is tossed. If it turns up heads, two balls will be drawn from box A, otherwise, two balls will be drawn from box B. Box A contains three black and five white balls. Box B contains seven black and one white balls. In both cases, selections are to be made with replacement. What is the probability that Box A is used, given that both balls drawn are black?
$[5+6+5]$
3. (a) Prove that mean is ' m ' and variance is σ^{2} for Gaussian distribution function.
(b) Find the moment generating and Characteristic function of the random variable X which has uniform distribution. [8+8]
4. (a) Prove that PSD and Auto correlation function of Random process form a fourier transform pair.
(b) A random process has the power density spectrum $S_{\mathrm{xx}}(\omega)=\frac{6 \omega^{2}}{1+\omega^{4}}$ Find the average power in the process.
5. (a) Find the noise bandwidth of a parallel RLC filter with 3db bandwidth B.
(b) Write short notes on "Available gain of two port network".

$$
[8+8]
$$

6. White noise $\mathrm{n}(\mathrm{t})$ with $P S D=\frac{n}{2}$ is passed through a low pass RC network with a 3 db frequency f_{c}.
(a) Find the auto correlation $\mathrm{R}(\tau)$ of the o/p noise of the network.
(b) Sketch $\rho(t)=\frac{R(\tau)}{R(o)}$
7. (a) What are the precautions to be taken in cascading stages of a network in the point of view of noise reduction?
(b) What is the need for band limiting the signal towards the direction inereasing SNR.
8. (a) Find the channel capacity of BSC as shown in figure5a.

Figure 5a
(b) Show that in general $\mathrm{H}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots \ldots . . \mathrm{x}_{n}\right) \leq \sum_{i=1}^{n} H\left(x_{i}\right)$

When does the equality hold?

II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks
$\star \star \star \star \star$

1. White noise $\mathrm{n}(\mathrm{t})$ with $P S D=\frac{n}{2}$ is passed through a low pass RC network with a 3 db frequency f_{c}.
(a) Find the auto correlation $\mathrm{R}(\tau)$ of the o/p noise of the network.
(b) Sketch $\rho(t)=\frac{R(\tau)}{R(o)}$
2. (a) What are the precautions to be taken in cascading stages of a network in the point of view of noise reduction?
(b) What is the need for band limiting the signal towards the direction increasing SNR.
3. (a) Prove that PSD and Auto correlation function of Random process form a fourier transform pair.
(b) A random process has the power density spectrum $\mathrm{S}_{\mathrm{xx}}(\omega)=\frac{6 \omega^{2}}{1+\omega^{4}}$ Find the average power in the process.
4. (a) Find the channel capacity of BSC as shown in figure5a.

Figure 5a
(b) Show that in general $\mathrm{H}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots \ldots . . \mathrm{x}_{n}\right) \leq \sum_{i=1}^{n} H\left(x_{i}\right)$

When does the equality hold?
5. The Rayleigh density function is given by

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})=\mathrm{xe}^{-\mathrm{x}^{2} / 2 \quad \mathrm{x} \geq 0} \\
=0 x<0
\end{gathered}
$$

(a) Prove that $\mathrm{f}(\mathrm{x})$ satisfies the properties of the p.d.f.
i. $\mathrm{f}(\mathrm{x}) \geq 0$ for all x and
ii. $\int_{\infty}^{\infty} f(x) d x=1$
(b) Find the distribution function $\mathrm{F}(\mathrm{x})$
(c) Find $\mathrm{P}(0.5<\mathrm{x} \leq 2)$
(d) Find $P(0.5 \leq x<2)$.
6. (a) If A and B are any events, not necessarily mutually exclusive events, derive an expression for probability of A Union B. When A and B are mutually exclusive, what happens to the above expression derived?
(b) Define the term Independent events. State the conditions for independence of
i. any two events A and B.
ii. any three events A, B and C.
(c) A coin is tossed. If it turns up heads, two balls will be drawn from box A, otherwise, two balls will be drawn from box B, Box A contains three black and five white balls. Box B contains seven black and one white balls. In both cases, selections are to be made with replacement. What is the probability that Box A is used, given that both balls drawn are black?
$[5+6+5]$
7. (a) Find the noise bandwidth of a parallel RLC filter with 3db bandwidth B.
(b) Write short notes on "Available gain of two port network".
8. (a) Prove that mean is ' m ' and variance is σ^{2} for Gaussian distribution function.
(b) Find the moment generating and Characteristic function of the random variable X which has uniform distribution.
[8+8]

II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

* $\star \star \star \star$

1. The Rayleigh density function is given by

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})=\mathrm{x} \mathrm{e}^{-\mathrm{x}^{2} / 2 \quad \mathrm{x} \geq 0} \\
=0 x<0
\end{gathered}
$$

(a) Prove that $\mathrm{f}(\mathrm{x})$ satisfies the properties of the p.d.f.
i. $\mathrm{f}(\mathrm{x}) \geq 0$ for all x and
ii. $\int_{\infty}^{\infty} f(x) d x=1$
(b) Find the distribution function F (x)
(c) Find $\mathrm{P}(0.5<\mathrm{x} \leq 2)$
(d) Find $\mathrm{P}(0.5 \leq \mathrm{x}<2)$.
2. (a) Prove that PSD and Auto correlation function of Random process form a fourier transform pair.
(b) A random process has the power density spectrum $S_{x x}(\boldsymbol{\omega})=\frac{6 \omega^{2}}{1+\omega^{4}}$ Find the average power in the process.

$$
[8+8]
$$

3. (a) Find the noise bandwidth of a parallel RLC filter with 3db bandwidth B.
(b) Write short notes on "Available gain of two port network".

$$
[8+8]
$$

4. White noise $\mathrm{n}(\mathrm{t})$ with $P S D=\frac{n}{2}$ is passed through a low pass RC network with a 3 db frequency f_{c}.
(a) Find the auto correlation $\mathrm{R}(\tau)$ of the o/p noise of the network.
(b) Sketch $\rho(t)=\frac{R(\tau)}{R(o)}$
5. (a) Find the channel capacity of BSC as shown in figure5a.

Figure 5a
(b) Show that in general $\mathrm{H}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots \ldots \ldots, \mathrm{x}_{n}\right) \leq$ When does the equality hold?

$$
[8+8]
$$

6. (a) If A and B are any events, not necessarily mutually exclusive events, derive an expression for probability of A Union B. When A and B are mutually exclusive, what happens to the above expression derived?
(b) Define the term Independent events. State the conditions for independence of i. any two events A and B.
ii. any three events A B and C.
(c) A coin is tossed. If it turns up heads, two balls will be drawn from box A, otherwise, two balls will be drawn from box B. Box A contains three black and five white balls. Box B contains seven black and one white balls. In both cases, selections are to be made with replacement. What is the probability that Box A is used, given that both balls drawn are black?

$$
[5+6+5]
$$

7. (a) Prove that mean is ' m ' and variance is σ^{2} for Gaussian distribution function.
(b) Find the moment generating and Characteristic function of the random variable X which has uniform distribution.
[8+8]
8. (a) What are the precautions to be taken in cascading stages of a network in the point of view of noise reduction?
(b) What is the need for band limiting the signal towards the direction increasing SNR.
