RR

II B.Tech I Semester Examinations, November 2010 DESIGN AND ANALYSIS OF ALGORITHMS Common to Information Technology, Computer Science And Engineering, **Computer Science And Systems Engineering**

Time: 3 hours

Code No: RR210504

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Describe the graph-coloring problem.
 - (b) Explain the recursive Backtracking algorithm for graph coloring
- (a) Describe the Brute force algorithm for evaluating a polynomial. What is its 2. time complexity?
 - (b) Solve the recurrence relation $a_n 7a_{n-1} + 16a_{n-2} 12a_{n-3} = 0$ for n>=3 with initial conditions $a_n 1a_{n-1} + 16a_{n-2} 12a_{n-3} = 0$ for n>=3 with initial conditions $a_0 = 1, a_1 = 4$ and $a_2 = 8$.
- 3. Explain the Prim's algorithm with an example. Analyze the time complexity of the algorithm. 16
- 4. (a) While executing each UNION instruction, the root of the tree with fewer vertices (ties are broken arbitrarily) is made a son of the root of the larger, then no tree in the forest of trees will have the height greater than or equal to h unless it has at least 2^h vertices. Prove this lemma using induction.
 - (b) Compute the order of the worst case, execution time for n UNION and n FIND instructions for the above case.
 - (c) Sketch the forest of trees before the path compression and after the path compression. [6+5+5]

5. Write a recursive and iterative algorithm to find the

- (a) number of nodes in a binary tree.
- [8+8](b) sum of contents of all nodes in a binary tree.

6a)Write the algorithm for the traveling salesperson problem using branch and bound techniques.

- (b) For the cost matrix of a Traveling salesperson problem, find the reduced cost matrix. [8+8]
 - ∞ 7
- 7. (a) Trace Merge sort and Quick sort for the following data set. 10, 30, 15, 45, 25, 30, 35, 20, 30, 40, 50
 - (b) Compare their time complexities.

[8+8]

Code No: RR210504

$\mathbf{R}\mathbf{R}$

Set No. 2

8. a) Draw the state space tree generated by FOFOBB and Backtracking.

b) Which of the above techniques is more efficient and why? [16]

 \mathbf{RR}

II B.Tech I Semester Examinations, November 2010 DESIGN AND ANALYSIS OF ALGORITHMS Common to Information Technology, Computer Science And Engineering, **Computer Science And Systems Engineering**

Time: 3 hours

Code No: RR210504

Max Marks: 80

8 + 8]

Answer any FIVE Questions All Questions carry equal marks

- * * * * *
- 1. Write a recursive and iterative algorithm to find the
 - (a) number of nodes in a binary tree.
 - (b) sum of contents of all nodes in a binary tree.
- 2. (a) Describe the graph-coloring problem.
 - (b) Explain the recursive Backtracking algorithm for graph coloring [8+8]
- 3. Draw the state space tree generated by FOFOBB and Backtracking. a)
 - b) Which of the above techniques is more efficient and why? [16]
- 4. Explain the Prim's algorithm with an example. Analyze the time complexity of the algorithm. [16]
- (a) Describe the Brute force algorithm for evaluating a polynomial. What is its 5. time complexity?
 - (b) Solve the recurrence relation $a_n 7a_{n-1} + 16a_{n-2} 12a_{n-3} = 0$ for n>=3 with initial conditions $a_0 = 1, a_1 = 4$ and $a_2 = 8$. [6+10]

6a)Write the algorithm for the traveling salesperson problem using branch and bound techniques.

(b) For the cost matrix of a Traveling salesperson problem, find the reduced cost matrix. [8+8]

Γ	∞	7	3	12	8]
	3	∞	6	14	9
i	5	8	∞	6	18
1	9	3	5	∞	11
L	18	14	9	8	∞

- 7. (a) While executing each UNION instruction, the root of the tree with fewer vertices (ties are broken arbitrarily) is made a son of the root of the larger, then no tree in the forest of trees will have the height greater than or equal to h unless it has at least 2^h vertices. Prove this lemma using induction.
 - (b) Compute the order of the worst case, execution time for n UNION and n FIND instructions for the above case.

www.firstranker.com

\mathbf{RR}

Set No. 4

- (c) Sketch the forest of trees before the path compression and after the path compression. [6+5+5]
- (a) Trace Merge sort and Quick sort for the following data set. 8. 10, 30, 15, 45, 25, 30, 35, 20, 30, 40, 50
 - (b) Compare their time complexities.

Code No: RR210504

[8+8]

FRANKER

 \mathbf{RR}

II B.Tech I Semester Examinations,November 2010 DESIGN AND ANALYSIS OF ALGORITHMS Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours

Code No: RR210504

Max Marks: 80

[8+8]

[8+8]

Answer any FIVE Questions All Questions carry equal marks

- 1. Write a recursive and iterative algorithm to find the
 - (a) number of nodes in a binary tree.
 - (b) sum of contents of all nodes in a binary tree.
- (a) Trace Merge sort and Quick sort for the following data set 10, 30, 15, 45, 25, 30, 35, 20, 30, 40, 50
 - (b) Compare their time complexities.
- 3. (a) Describe the Brute force algorithm for evaluating a polynomial. What is its time complexity?
 - (b) Solve the recurrence relation $a_n 7a_{n-1} + 16a_{n-2} 12a_{n-3} = 0$ for $n \ge 3$ with initial conditions $a_0 = 1$, $a_1 = 4$ and $a_2 = 8$. [6+10]
- 4. Explain the Prim's algorithm with an example. Analyze the time complexity of the algorithm. [16]
- 5. (a) While executing each UNION instruction, the root of the tree with fewer vertices (ties are broken arbitrarily) is made a son of the root of the larger, then no tree in the forest of trees will have the height greater than or equal to h unless it has at least 2^h vertices. Prove this lemma using induction.
 - (b) Compute the order of the worst case, execution time for n UNION and n FIND instructions for the above case.
 - (c) Sketch the forest of trees before the path compression and after the path compression. [6+5+5]
- 6. (a) Describe the graph-coloring problem.
 - (b) Explain the recursive Backtracking algorithm graph coloring [8+8]

7. a) Draw the state space tree generated by FOFOBB and Backtracking.

b) Which of the above techniques is more efficient and why? [16]

8a)Write the algorithm for the traveling salesperson problem using branch and bound techniques.

 $\mathbf{R}\mathbf{R}$

(b) For the cost matrix of a Traveling salesperson problem, find the reduced cost matrix. [8+8]

Γ	∞	7	3	12	8 -	1
	3	∞	6	14	9	
i	5	8	∞	6	18	i
	9	3	5	∞	11	
	18	14	9	8	∞	

Code No: RR210504

FRANKER

Code No: RR210504

 \mathbf{RR}

Set No. 3

[8+8]

II B.Tech I Semester Examinations, November 2010 DESIGN AND ANALYSIS OF ALGORITHMS Common to Information Technology, Computer Science And Engineering, **Computer Science And Systems Engineering** Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1a)Write the algorithm for the traveling salesperson problem using branch and bound techniques.

- (b) For the cost matrix of a Traveling salesperson problem, find the reduced cost [8+8]matrix. (L
 - $\begin{vmatrix} \infty & 7 & 5 & 12 & 8 \\ 3 & \infty & 6 & 14 & 9 \\ 5 & 8 & \infty & 6 & 18 \\ 9 & 3 & 5 & \infty & 11 \\ 18 & 14 & 9 & 8 & \infty \end{vmatrix}$
- 2. Explain the Prim's algorithm with an example. Analyze the time complexity of the algorithm. [16]
- 3. (a) While executing each UNION instruction, the root of the tree with fewer vertices (ties are broken arbitrarily) is made a son of the root of the larger, then no tree in the forest of trees will have the height greater than or equal to h unless it has at least 2^h vertices. Prove this lemma using induction.
 - (b) Compute the order of the worst case, execution time for n UNION and n FIND instructions for the above case.
 - (c) Sketch the forest of trees before the path compression and after the path compression. [6+5+5]

4. a) Draw the state space tree generated by FOFOBB and Backtracking.

- Which of the above techniques is more efficient and why? b) [16]
- (a) Trace Merge sort and Quick sort for the following data set. 5. 10, 30, 15, 45, 25, 30, 35, 20, 30, 40, 50
 - (b) Compare their time complexities.
- 6. (a) Describe the Brute force algorithm for evaluating a polynomial. What is its time complexity?
 - (b) Solve the recurrence relation $a_n 7a_{n-1} + 16a_{n-2} 12a_{n-3} = 0$ for n>=3 with initial conditions $a_0 = 1, a_1 = 4$ and $a_2 = 8$. [6+10]
- 7. (a) Describe the graph-coloring problem.

www.firstranker.com

$\mathbf{R}\mathbf{R}$

Set No. 3

[8+8]

(b) Explain the recursive Backtracking algorithm graph coloring [8+8]

- 8. Write a recursive and iterative algorithm to find the
 - (a) number of nodes in a binary tree.

Code No: RR210504

(b) sum of contents of all nodes in a binary tree.

FRANKER