II B.Tech I Semester Examinations,November 2010
 FLUID MECHANICS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Water flows through an orifice of 25 mm diameter situated in a 75 mm pipe at the rate of $300 \mathrm{~cm}^{2} / \mathrm{sec}$. What will be the difference in the level on a water manometer connected across the meter. Viscosity of the water is given as $1 m N s / m^{2}$. [16]
2. A cylinder containing 2 kg nitrogen at 0.14 Mpa abs and $5^{0} \mathrm{c}$ is compressed isentropically to 0.3 Mpa abs. Find the final temperature and the work required. Take $\gamma=1.4$.
3. To clean a sand bed filter, it is fluidized at minimum conditions using water at $24^{0} \mathrm{C}$ the round sand particles have density of $2550 \mathrm{~kg} / \mathrm{m}^{3}$ and an average size of 0.4 mm . The sand has the following properties: Sphericity $=0.86$; void fraction $=0.42$. The diameter is 0.4 m and desired height of the bed at these minimum fluidizing conditions is 1.75 m , calculate the amount of solids need.
4. Derive the condition for hydrostatic equilibrium in a centrifugal field.
5. Prove that the maximum velocity of an incompressible fluid flowing through the pipe I given by $\left(\tau_{w} g_{c} r_{w} / 2 \mu\right)$.
6. (a) What are the different forces acting on the particle moving through the fluid.
(b) Define terminal velocity. Derive the equation for terminal velocity for gravitational settling.
[6+10]
7. An oil of specific gravity 0.85 and 1.7 cp viscosity is flowing through a smooth pipe of 150 mm diameter at the rate of $20 \mathrm{lt} / \mathrm{min}$. Determine whether the flow is laminar or turbulent. Calculate pressure drop for 100 m length of the pipe.
8. (a) Describe the process of Boundary layer formation, also describe the process of Boundary layer separation.
(b) Define the terms fully developed flow and transition length.

II B.Tech I Semester Examinations,November 2010
 FLUID MECHANICS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. A cylinder containing 2 kg nitrogen at 0.14 Mpa abs and $5^{0} \mathrm{c}$ is compressed isentropically to 0.3 Mpa abs. Find the final temperature and the work required. Take $\gamma=1.4$.
2. An oil of specific gravity 0.85 and 1.7 cp viscosity is flowing through a smooth pipe of 150 mm diameter at the rate of $20 \mathrm{lt} / \mathrm{min}$. Determine whether the flow is laminar or turbulent. Calculate pressure drop for 100 m length of the pipe.
[16]
3. (a) What are the different forces acting on the particle moving through the fluid.
(b) Define terminal velocity. Derive the equation for terminal velocity for gravitational settling.
[6+10]
4. To clean a sand bed filter, it is fluidized at minimum conditions using water at $24^{0} \mathrm{C}$ the round sand particles have density of $2550 \mathrm{~kg} / \mathrm{m}^{3}$ and an average size of 0.4 mm . The sand has the following properties: Sphericity $=0.86$; void fraction $=0.42$. The diameter is 0.4 m and desired height of the bed at these minimum fluidizing conditions is 1.75 m , calculate the amount of solids need. [16]
5. Water flows through an orifice of 25 mm diameter situated in a 75 mm pipe at the rate of $300 \mathrm{em}^{2} / \mathrm{sec}$. What will be the difference in the level on a water manometer connected across the meter. Viscosity of the water is given as $1 \mathrm{mNs} / \mathrm{m}^{2}$. [16]
6. (a) Describe the process of Boundary layer formation, also describe the process of Boundary layer separation.
(b) Define the terms fully developed flow and transition length.
7. Derive the condition for hydrostatic equilibrium in a centrifugal field.
8. Prove that the maximum velocity of an incompressible fluid flowing through the pipe I given by $\left(\tau_{w} g_{c} r_{w} / 2 \mu\right)$.

II B.Tech I Semester Examinations,November 2010
 FLUID MECHANICS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) What are the different forces acting on the particle moving through the fluid.
(b) Define terminal velocity. Derive the equation for terminal velocity for gravitational settling.
[6+10]
2. An oil of specific gravity 0.85 and 1.7 cp viscosity is flowing througha smooth pipe of 150 mm diameter at the rate of $20 \mathrm{lt} / \mathrm{min}$. Determine whether the flow is laminar or turbulent. Calculate pressure drop for 100 m length of the pipe.
3. (a) Describe the process of Boundary layer formation, also describe the process of Boundary layer separation.
(b) Define the terms fully developed flow and transition length.
4. Prove that the maximum velocity of an ineompressible fluid flowing through the pipe I given by $\left(\tau_{w} g_{c} r_{w} / 2 \mu\right)$.
5. A cylinder containing 2 kg nitrogen at 0.14 Mpa abs and $5^{\circ} \mathrm{c}$ is compressed isentropically to 0.3 Mpa abs. Find the final temperature and the work required. Take $\gamma=1$. 4 .
6. Water flows through an orifice of 25 mm diameter situated in a 75 mm pipe at the rate of $300 \mathrm{~cm}^{2} / \mathrm{sec}$. What will be the difference in the level on a water manometer connected across the meter. Viscosity of the water is given as $1 \mathrm{mNs} / \mathrm{m}^{2}$.
7. To clean a sand bed filter, it is fluidized at minimum conditions using water at $24^{0} \mathrm{C}$ the round sand particles have density of $2550 \mathrm{~kg} / \mathrm{m}^{3}$ and an average size of 0.4 mm . The sand has the following properties: Sphericity $=0.86$; void fraction $=0.42$. The diameter is 0.4 m and desired height of the bed at these minimum fluidizing conditions is 1.75 m , calculate the amount of solids need.
8. Derive the condition for hydrostatic equilibrium in a centrifugal field.

II B.Tech I Semester Examinations,November 2010 FLUID MECHANICS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Water flows through an orifice of 25 mm diameter situated in a 75 mm pipe at the rate of $300 \mathrm{~cm}^{2} / \mathrm{sec}$. What will be the difference in the level on a water manometer connected across the meter. Viscosity of the water is given as $1 m N s / m^{2}$. [16]
2. Derive the condition for hydrostatic equilibrium in a centrifugal field.
3. An oil of specific gravity 0.85 and 1.7 cp viscosity is flowing through a smooth pipe of 150 mm diameter at the rate of $20 \mathrm{lt} / \mathrm{min}$. Determine whether the flow is laminar or turbulent. Calculate pressure drop for 100 m length of the pipe.
4. To clean a sand bed filter, it is fluidized at minimum conditions using water at $24^{0} \mathrm{C}$ the round sand particles have density of $2550 \mathrm{~kg} / \mathrm{m}^{3}$ and an average size of 0.4 mm . The sand has the following properties: Sphericity $=0.86$; void fraction $=0.42$. The diameter is 0.4 m and desired height of the bed at these minimum fluidizing conditions is 1.75 m , calculate the amount of solids need. [16]
5. (a) Describe the process of Boundary layer formation, also describe the process of Boundary layer separation.
(b) Define the terms fully developed flow and transition length.
6. Prove that the maximum velocity of an incompressible fluid flowing through the pipe I given by $\left(\tau_{w} g_{c} r_{w} / 2 \mu\right)$.
7. (a) What are the different forces acting on the particle moving through the fluid.
(b) Define terminal velocity. Derive the equation for terminal velocity for gravitational settling.
[6+10]
8. A cylinder containing 2 kg nitrogen at 0.14 Mpa abs and $5^{0} \mathrm{c}$ is compressed isentropically to 0.3 Mpa abs. Find the final temperature and the work required. Take $\gamma=1$. 4 .
