II B.Tech I Semester Examinations,November 2010 MATERIAL AND ENERGY BALANCE Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) If a solute forms a hydrate, how is the standard heat of solution of hydrates determined?
(b) What is the heat of hydration?
(c) Calculate the standard heat of solution of $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to form a solution containing 10 moles of water per mole of CaCl_{2}.
$\Delta \mathrm{H}_{f}$ at $25^{\circ} \mathrm{C}$ and 1 atm are as follows: $\mathrm{CaCl}_{2}=-794960 \mathrm{~J}$ $\mathrm{H}_{2} \mathrm{O}=-285840 \mathrm{~J}$
$\mathrm{CaCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}=-2607259.6 \mathrm{~J}$
$\Delta \mathrm{H}_{s}$ at $25^{\circ} \mathrm{C}$, for $\mathrm{CaCl}_{2}\left(\mathrm{n}_{1}=10\right)=-64852 \mathrm{~J}$
$[5+5+6]$
2. It is proposed to recover acetone, which is used as a solvent in an extraction process, by evaporation in to a stream of nitrogen. The nitrogen enters the evaporator at a temperature of $30^{\circ} \mathrm{C}$ containing acetone such that its dew point is $10^{\circ} \mathrm{C}$. It leaves at a temperature of $25^{\circ} \mathrm{C}$ with a dew point of $20^{\circ} \mathrm{C}$. The barometric pressure is constant at 750 mm - Hg . Calculate
(a) The vapor concentrations of the gases entering and leaving the evaporator, expressed in moles of vapor per mole of vapor free gas.
(b) The moles of acetone evaporated per mole of vapor free gas passing through the evaporator.
(c) The weight of acetone evaporated per $1000 \mathrm{~m}^{3}$ of gases entering the evaporator.
(d) The volume of gases leaving the evaporator per $1000 \mathrm{~m}^{3}$ entering.

Vapor pressure of acetone:
116 mm Hg at $10^{\circ} \mathrm{C}$.
185 mm Hg at $20^{\circ} \mathrm{C}$.
3. (a) A dryer system handles $1000 \mathrm{~kg} /$ day of wet solids. The wet solids containing 50% solids and 50% water are fed to the first drier. From the first drier the product that comes out has 20% moisture. This is admitted to the second drier from which the product coming out has 2% moisture. Calculate
i. the $\%$ of original water that is removed.
ii. The final weight of the product.
(b) Formaldehyde is produced from Methanol in a catalytic reactor by the reaction $\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2}$. If the conversion of methanol is 65% calculate the required feed rate of methanol if the production rate of formaldehyde is 1000 $\mathrm{kg} / \mathrm{hr}$.
4. Calculate the heat that is available by coooling the flue gases having the following volumetric composition from $300^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.
CO2 .. 10.32 ; CO ..0.37; O2 ..5.72
N2 .. 75.76 ; H2 O..7.83
$\mathrm{Cp}=\mathrm{a}+\mathrm{b} \mathrm{T}+\mathrm{c}$ T2 Cp in cal/gmol -k , T in K
abx $10^{3} \mathrm{C} \times 10^{6}$

CO_{2}	6.339	10.140	-3.415
CO	6.350	1.811	-0.267
O_{2}	6.117	3.167	-1.005
$\mathrm{~N}_{2}$	6.457	1.389	-0.069
$\mathrm{H}_{2} \mathrm{O}$	7.136	2.640	0.046

5. (a) Write short notes on
i. Critical properties.
ii. Effect of temperature on vapor pressure.
(b) What are reference substance plots? Discuss about equal-pressure. referencesubstance plots and equal-temperature reference-substance plots giving examples.
[8+8]
6. (a) Define the following:
i. Partial pressure
ii. Pure-component volume.
(b) Prove that for an ideal gas mixture, the partial pressure of a component of the mixture is equal to the product of total pressure and the mole fraction of that component.
7. Copperas (crude ferrous sulfate) is purified by dissolving it in water and recrystallizing it in a crystallizer. First copperas is dissolved in pure water to give a solution containing $28 \% \mathrm{FeSO}_{4}$ (by weight). The solution is cooled to 283 K to give out the crystals of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. The loss of water due to evaporation during the cooling operation is 5% on the basis of total solution, charged to the crystalliser. It is desired to yield 0.5 T of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ crystals. The original copperas contains $96 \% \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (by weight). Find the quantity of the copperas charged to the crystalliser. The solubility of FeSO_{4} at 283 K is 20.51 gm per 100 gm water. Assume the solubility of FeSO_{4} at 283 K is unaffected by impurities present in copperas.
8. (a) Nitric acid and water forms a maximum boiling azeotrope containing 62.2 mole $\%$ water (boiling temperature is $130.6^{\circ} \mathrm{C}$). Find the composition of the azeotrope by weight \%and mole \% of TEA in the solution. Chemical formula of TEA is $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{3}$.
(b) The solubility of methyl bromide in methanol is 44 kg per 100 kg at 298 K . Find the weight fraction and mole fraction of methanol in the saturated solution.Atomic weight of Bromine is 79.9.
$[8+8]$

II B.Tech I Semester Examinations,November 2010 MATERIAL AND ENERGY BALANCE Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Copperas (crude ferrous sulfate) is purified by dissolving it in water and recrystallizing it in a crystallizer. First copperas is dissolved in pure water to give a solution containing $28 \% \mathrm{FeSO}_{4}$ (by weight). The solution is cooled to 283 K to give out the crystals of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. The loss of water due to evaporation during the cooling operation is 5% on the basis of total solution, charged to the crystalliser. It is desired to yield 0.5 T of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ crystals. The original copperas contains $96 \% \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (by weight). Find the quantity of the copperas charged to the crystalliser. The solubility of FeSO_{4} at 283 K is 20.51 gm per 100 gm water. Assume the solubility of FeSO_{4} at 283 K is unaffected by impurities present in copperas.
2. (a) Nitric acid and water forms a maximum boiling azeotrope containing 62.2 mole $\%$ water (boiling temperature is $130.6^{\circ} \mathrm{C}$). Find the composition of the azeotrope by weight \%and mole \% of TEA in the solution. Chemical formula of TEA is $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{3}$.
(b) The solubility of methyl bromide in methanol is 44 kg per 100 kg at 298K. Find the weight fraction and mole fraction of methanol in the saturated solution.Atomic weight of Bromine is 79.9.
[8+8]
3. It is proposed to recover acetone, which is used as a solvent in an extraction process, by evaporation in to a stream of nitrogen. The nitrogen enters the evaporator at a temperature of $30^{\circ} \mathrm{C}$ containing acetone such that its dew point is $10^{\circ} \mathrm{C}$. It leaves at a temperature of $25^{\circ} \mathrm{C}$ with a dew point of $20^{\circ} \mathrm{C}$. The barometric pressure is constant at 750 mm Hg. Calculate
(a) The vapor concentrations of the gases entering and leaving the evaporator, expressed in moles of vapor per mole of vapor free gas.
(b) The moles of acetone evaporated per mole of vapor free gas passing through the evaporator.
(c) The weight of acetone evaporated per $1000 \mathrm{~m}^{3}$ of gases entering the evaporator.
(d) The volume of gases leaving the evaporator per $1000 \mathrm{~m}^{3}$ entering.

Vapor pressure of acetone:
116 mm Hg at $10^{\circ} \mathrm{C}$.
185 mm Hg at $20^{\circ} \mathrm{C}$.
4. (a) If a solute forms a hydrate, how is the standard heat of solution of hydrates determined?
(b) What is the heat of hydration?
(c) Calculate the standard heat of solution of $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to form a solution containing 10 moles of water per mole of CaCl_{2}.
$\Delta \mathrm{H}_{f}$ at $25^{\circ} \mathrm{C}$ and 1 atm are as follows: $\mathrm{CaCl}_{2}=-794960 \mathrm{~J}$
$\mathrm{H}_{2} \mathrm{O}=-285840 \mathrm{~J}$
$\mathrm{CaCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}=-2607259.6 \mathrm{~J}$
$\Delta \mathrm{H}_{s}$ at $25^{0} \mathrm{C}$, for $\mathrm{CaCl}_{2}\left(\mathrm{n}_{1}=10\right)=-64852 \mathrm{~J}$
5. Calculate the heat that is available by coooling the flue gases
having the following volumetric composition from $300^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.
CO2 .. 10.32 ; CO ..0.37; O2 ..5.72
N2 .. 75.76 ; H2 O..7.83
$\mathrm{Cp}=\mathrm{a}+\mathrm{b} \mathrm{T}+\mathrm{c}$ T2 Cp in cal/gmol $-\mathrm{k}, \mathrm{T}$ in K
abx $10^{3} \mathrm{C} \times 10^{6}$

CO_{2}	6.339	10.140	-3.415
CO	6.350	1.811	-0.267
O_{2}	6.117	3.167	-1.005
$\mathrm{~N}_{2}$	6.457	1.389	-0.069
$\mathrm{H}_{2} \mathrm{O}$	7.136	2.640	0.046

6. (a) A dryer system handles 1000 kg /day of wet solids. The wet solids containing 50% solids and 50% water are fed to the first drier. From the first drier the product that comes out has 20% moisture. This is admitted to the second drier from which the product coming out has 2% moisture. Calculate
i. the \% of original water that is removed.
ii. The final weight of the product.
(b) Formaldehyde is produced from Methanol in a catalytic reactor by the reaction $\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2}$. If the conversion of methanol is 65% calculate the required feed rate of methanol if the production rate of formaldehyde is 1000 $\mathrm{kg} / \mathrm{hr}$.
7. (a) Define the following:
i. Partial pressure
ii. Pure-component volume.
(b) Prove that for an ideal gas mixture, the partial pressure of a component of the mixture is equal to the product of total pressure and the mole fraction of that component.

$$
[4+4+8]
$$

8. (a) Write short notes on
i. Critical properties.
ii. Effect of temperature on vapor pressure.
(b) What are reference substance plots? Discuss about equal-pressure. referencesubstance plots and equal-temperature reference-substance plots giving examples.

II B.Tech I Semester Examinations,November 2010 MATERIAL AND ENERGY BALANCE Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Copperas (crude ferrous sulfate) is purified by dissolving it in water and recrystallizing it in a crystallizer. First copperas is dissolved in pure water to give a solution containing $28 \% \mathrm{FeSO}_{4}$ (by weight). The solution is cooled to 283 K to give out the crystals of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. The loss of water due to evaporation during the cooling operation is 5% on the basis of total solution, charged to the crystalliser. It is desired to yield 0.5 T of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ crystals. The original copperas contains $96 \% \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (by weight). Find the quantity of the copperas charged to the crystalliser. The solubility of FeSO_{4} at 283 K is 20.51 gm per 100 gm water. Assume the solubility of FeSO_{4} at 283 K is unaffected by impurities present in copperas.
2. (a) A dryer system handles $1000 \mathrm{~kg} /$ day of wet solids. The wet solids containing 50% solids and 50% water are fee to the first drier. From the first drier the product that comes out has 20% moisture. This is admitted to the second drier from which the product coming out has 2% moisture. Calculate
i. the $\%$ of original water that is removed.
ii. The final weight of the product.
(b) Formaldehyde is produced from Methanol in a catalytic reactor by the reaction $\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2}$. If the conversion of methanol is 65% calculate the required feed rate of methanol if the production rate of formaldehyde is 1000 $\mathrm{kg} / \mathrm{hr}$.
[8+8]
3. Calculate the heat that is available by coooling the flue gases having the following volumetric composition from $300^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.
CO2 .. 10.32 ; CO ..0.37; O2 ..5.72
N2 .. 75.76 ; H2 O..7.83
$\mathrm{Cp}=\mathrm{a}+\mathrm{b} \mathrm{T}+\mathrm{c}$ T2 Cp in cal/gmol $-\mathrm{k}, \mathrm{T}$ in K
abx $10^{3} \mathrm{C} \times 10^{6}$

CO_{2}	6.339	10.140	-3.415
CO	6.350	1.811	-0.267
O_{2}	6.117	3.167	-1.005
$\mathrm{~N}_{2}$	6.457	1.389	-0.069
$\mathrm{H}_{2} \mathrm{O}$	7.136	2.640	0.046

4. It is proposed to recover acetone, which is used as a solvent in an extraction process, by evaporation in to a stream of nitrogen. The nitrogen enters the evaporator at a temperature of $30^{\circ} \mathrm{C}$ containing acetone such that its dew point is $10^{\circ} \mathrm{C}$. It leaves
at a temperature of $25^{\circ} \mathrm{C}$ with a dew point of $20^{\circ} \mathrm{C}$. The barometric pressure is constant at 750 mm Hg . Calculate
(a) The vapor concentrations of the gases entering and leaving the evaporator, expressed in moles of vapor per mole of vapor free gas.
(b) The moles of acetone evaporated per mole of vapor free gas passing through the evaporator.
(c) The weight of acetone evaporated per $1000 \mathrm{~m}^{3}$ of gases entering the evaporator.
(d) The volume of gases leaving the evaporator per $1000 \mathrm{~m}^{3}$ entering.

Vapor pressure of acetone:
116 mm Hg at $10^{0} \mathrm{C}$.
185 mm Hg at $20^{\circ} \mathrm{C}$.
5. (a) Define the following:
i. Partial pressure
ii. Pure-component volume.
(b) Prove that for an ideal gas mixture, the partial pressure of a component of the mixture is equal to the product of total pressure and the mole fraction of that component.
$[4+4+8]$
6. (a) If a solute forms a hydrate, how is the standard heat of solution of hydrates determined?
(b) What is the heat of hydration?
(c) Calculate the standard heat of solution of $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to form a solution containing 10 moles of water per mole of CaCl_{2}.
$\Delta \mathrm{H}_{f}$ at $25^{\circ} \mathrm{C}$ and 1 atm are as follows: $\mathrm{CaCl}_{2}=-794960 \mathrm{~J}$
$\mathrm{H}_{2} \mathrm{O}=-285840 \mathrm{~J}$
$\mathrm{CaCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}=-2607259.6 \mathrm{~J}$
$\Delta \mathrm{H}_{s}$ at $25^{\circ} \mathrm{C}$, for $\mathrm{CaCl}_{2}\left(\mathrm{n}_{1}=10\right)=-64852 \mathrm{~J}$

$$
[5+5+6]
$$

7. (a) Write short notes on
i. Critical properties.
ii. Effect of temperature on vapor pressure.
(b) What are reference substance plots? Discuss about equal-pressure. referencesubstance plots and equal-temperature reference-substance plots giving examples.
8. (a) Nitric acid and water forms a maximum boiling azeotrope containing 62.2 mole $\%$ water (boiling temperature is $130.6^{\circ} \mathrm{C}$). Find the composition of the azeotrope by weight \%and mole \% of TEA in the solution. Chemical formula of TEA is $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{3}$.
(b) The solubility of methyl bromide in methanol is 44 kg per 100 kg at 298 K . Find the weight fraction and mole fraction of methanol in the saturated solution.Atomic weight of Bromine is 79.9.

II B.Tech I Semester Examinations,November 2010 MATERIAL AND ENERGY BALANCE Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Copperas (crude ferrous sulfate) is purified by dissolving it in water and recrystallizing it in a crystallizer. First copperas is dissolved in pure water to give a solution containing $28 \% \mathrm{FeSO}_{4}$ (by weight). The solution is cooled to 283 K to give out the crystals of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. The loss of water due to evaporation during the cooling operation is 5% on the basis of total solution, charged to the crystalliser. It is desired to yield 0.5 T of $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ crystals. The original copperas contains $96 \% \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (by weight). Find the quantity of the copperas charged to the crystalliser. The solubility of FeSO_{4} at 283 K is 20.51 gm per 100 gm water. Assume the solubility of FeSO_{4} at 283 K is unaffected by impurities present in copperas.
2. (a) A dryer system handles $1000 \mathrm{~kg} /$ day of wet solids. The wet solids containing 50% solids and 50% water are fed to the first drier. From the first drier the product that comes out has 20% moisture. This is admitted to the second drier from which the product coming out has 2% moisture. Calculate
i. the $\%$ of original water that is removed.
ii. The final weight of the product.
(b) Formaldehyde is produced from Methanol in a catalytic reactor by the reaction $\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2}$. If the conversion of methanol is 65% calculate the required feed rate of methanol if the production rate of formaldehyde is 1000 $\mathrm{kg} / \mathrm{hr}$.
3. It is proposed to recover acetone, which is used as a solvent in an extraction process, by evaporation in to a stream of nitrogen. The nitrogen enters the evaporator at a temperature of $30^{\circ} \mathrm{C}$ containing acetone such that its dew point is $10^{\circ} \mathrm{C}$. It leaves at a temperature of $25^{\circ} \mathrm{C}$ with a dew point of $20^{\circ} \mathrm{C}$. The barometric pressure is constant at 750 mm Hg. Calculate
(a) The vapor concentrations of the gases entering and leaving the evaporator, expressed in moles of vapor per mole of vapor free gas.
(b) The moles of acetone evaporated per mole of vapor free gas passing through the evaporator.
(c) The weight of acetone evaporated per $1000 \mathrm{~m}^{3}$ of gases entering the evaporator.
(d) The volume of gases leaving the evaporator per $1000 \mathrm{~m}^{3}$ entering.

Vapor pressure of acetone:
116 mm Hg at $10^{\circ} \mathrm{C}$.
185 mm Hg at $20^{\circ} \mathrm{C}$.
4. Calculate the heat that is available by coooling the flue gases
having the following volumetric composition from $300^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.
CO2 .. 10.32 ; CO ..0.37; O2 ..5.72
N2 .. 75.76 ; H2 O..7.83
$\mathrm{Cp}=\mathrm{a}+\mathrm{b} \mathrm{T}+\mathrm{c}$ T2 Cp in cal/gmol -k , T in K
abx $10^{3} \mathrm{C} \times 10^{6}$

CO_{2}	6.339	10.140	-3.415
CO	6.350	1.811	-0.267
O_{2}	6.117	3.167	-1.005
$\mathrm{~N}_{2}$	6.457	1.389	-0.069
$\mathrm{H}_{2} \mathrm{O}$	7.136	2.640	0.046

5. (a) Write short notes on
i. Critical properties.
ii. Effect of temperature on vapor pressure.
(b) What are reference substance plots? Discuss about equal-pressure. referencesubstance plots and equal-temperature reference-substance plots giving examples.
6. (a) If a solute forms a hydrate, how is the standard heat of solution of hydrates determined?
(b) What is the heat of hydration?
(c) Calculate the standard heat of solution of $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to form a solution containing 10 motes of water per mole of CaCl_{2}.
$\Delta \mathrm{H}_{f}$ at $25^{\circ} \mathrm{C}$ and 1 atm are as follows: $\mathrm{CaCl}_{2}=-794960 \mathrm{~J}$
$\mathrm{H}_{2} \mathrm{O}=-285840 \mathrm{~J}$
CaCle. $6 \mathrm{H}_{2} \mathrm{O}=-2607259.6 \mathrm{~J}$
$\Delta \mathrm{H}_{s}$ at $25^{\circ} \mathrm{C}$, for $\mathrm{CaCl}_{2}\left(\mathrm{n}_{1}=10\right)=-64852 \mathrm{~J}$

$$
[5+5+6]
$$

7. (a) Nitric acid and water forms a maximum boiling azeotrope containing 62.2 mole $\%$ water (boiling temperature is $130.6^{\circ} \mathrm{C}$). Find the composition of the azeotrope by weight \%and mole \% of TEA in the solution. Chemical formula of TEA is $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{3}$.
(b) The solubility of methyl bromide in methanol is 44 kg per 100 kg at 298 K. Find the weight fraction and mole fraction of methanol in the saturated solution.Atomic weight of Bromine is 79.9.
[8+8]
8. (a) Define the following:
i. Partial pressure
ii. Pure-component volume.
(b) Prove that for an ideal gas mixture, the partial pressure of a component of the mixture is equal to the product of total pressure and the mole fraction of that component.
$[4+4+8]$
