\mathbf{RR}

Set No. 2

II B.Tech I Semester Examinations, November 2010 THERMODYNAMICS AND FLUID MECHANICS Common to Mechatronics, Production Engineering

Time: 3 hours

Code No: RR211401

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Derive the governing equation for the adiabatic process. [8] (b) Explain Joules experiment in detail. [8] 2. (a) A pressure vessel has a volume of 1 m^3 and contains air at 1.4 MPa, 175^0 C. The air is cooled to 25° C by heat transfer to the surroundings at 25° C. Calculate the availability in the initial and final states and the irreversibility for the process. Assume for air Cp = 1.005 kJ/kg, K and R = 0.287 kJ/kg.K. 8 (b) What is third law of thermodynamics? State its significance. [8] 3. (a) What is thermodynamic equilibrium? Explain the significance of it in quasistatic process? [2+2](b) Identify the proper type of system in each case and explain the reason for your choice. i. Electric generator ii. Domestic tea kettle iii. Electric fan iv. A living human being. [4x3=12]4. A Rankine cycle operates between a boiler pressure of 4 MPa, 300°C and a condenser pressure of 50 kPa. Determine the thermal efficiency of the cycle, the work ratio and specific steam flow rate? 16 5. (a) What is capillarity ? What are the reasons for its presence? [6](b) The relative density of a fluid is 1.26 and its dynamic viscosity is 1.5 Pa-S Calculate its specific weight and kinematic viscosity. [10]
- 6. (a) What is the relation between velocity potential and stream function ? [8]
 - (b) Find the equation of streamline passing through (1,1) if the velocity field is given by V = (3x)i + (3y)j. [8]
- 7. Ten grammes of water at 20°C is converted to ice at -10°C at constant atmospheric pressure. Assuming the specific heat of liquid water to remain constant at 4.2 J/g°C and that of ice to be half of this value, and taking the latent heat of fusion of ice at 0°C to be 335J/g, calculate the total entropy change of the system. [16]
- 8. (a) Explain different methods of preventing the separation of boundary layer in detail. [8]

Code No: RR211401

 \mathbf{RR}

Set No. 2

- (b) Water is flowing over as thin smooth plate of length 4.5m and width 2.5m at a velocity of 0.9 m/sec. If the boundary layer flow changes from laminar to turbulent at a Reynolds number 5×10^5 find
 - i. The distance from leading edge up to which boundary layer is laminar
 - ii. Thickness of boundary layer at the transition point.
 - iii. The drag force on one side of the plate. Take viscosity of water as 0.01 poise.

**** RANKE

 \mathbf{RR}

Set No. 4

II B.Tech I Semester Examinations, November 2010 THERMODYNAMICS AND FLUID MECHANICS Common to Mechatronics, Production Engineering

Time: 3 hours

Code No: RR211401

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

 (a) A pressure vessel has a volume of 1 m³ and contains air at 1.4 MPa, 175^o C. The air is cooled to 25^oC by heat transfer to the surroundings at 25^oC. Calculate the availability in the initial and final states and the irreversibility for the process. Assume for air Cp= 1.005 kJ/kg.K and R = 0.287kJ/kg.K.

(b) What is third law of thermodynamics? State its significance.		8]
--	--	---	---

- 2. (a) Derive the governing equation for the adiabatic process.
 (b) Explain Joules experiment in detail.
- 3. Ten grammes of water at 20^oC is converted to ice at -10^oC at constant atmospheric pressure. Assuming the specific heat of liquid water to remain constant at 4.2 J/g^oC and that of ice to be half of this value, and taking the latent heat of fusion of ice at 0^oC to be 335J/g, calculate the total entropy change of the system. [16]
- 4. (a) What is the relation between velocity potential and stream function ? [8]
 - (b) Find the equation of streamline passing through (1,1) if the velocity field is given by V = (3x)i + (3y)j. [8]
- 5. (a) What is capillarity? What are the reasons for its presence? [6]
 - (b) The relative density of a fluid is 1.26 and its dynamic viscosity is 1.5 Pa-S.Calculate its specific weight and kinematic viscosity. [10]
- 6. (a) What is thermodynamic equilibrium? Explain the significance of it in quasistatic process? [2+2]
 - (b) Identify the proper type of system in each case and explain the reason for your choice.
 - i. Electric generator
 - ii. Domestic tea kettle
 - iii. Electric fan
 - iv. A living human being. [4x3=12]
- A Rankine cycle operates between a boiler pressure of 4 MPa, 300^oC and a condenser pressure of 50 kPa. Determine the thermal efficiency of the cycle, the work ratio and specific steam flow rate? [16]
- 8. (a) Explain different methods of preventing the separation of boundary layer in detail. [8]

Code No: RR211401

RR

Set No. 4

- (b) Water is flowing over as thin smooth plate of length 4.5m and width 2.5m at a velocity of 0.9 m/sec. If the boundary layer flow changes from laminar to turbulent at a Reynolds number 5×10^5 find
 - i. The distance from leading edge up to which boundary layer is laminar
 - ii. Thickness of boundary layer at the transition point.
 - iii. The drag force on one side of the plate. Take viscosity of water as 0.01 poise.

 \mathbf{RR}

Set No. 1

II B.Tech I Semester Examinations, November 2010 THERMODYNAMICS AND FLUID MECHANICS Common to Mechatronics, Production Engineering

Time: 3 hours

Code No: RR211401

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. A Rankine cycle operates between a boiler pressure of 4 MPa, 300^oC and a condenser pressure of 50 kPa. Determine the thermal efficiency of the cycle, the work ratio and specific steam flow rate? [16]
- 2. (a) What is the relation between velocity potential and stream function? [8]
 - (b) Find the equation of streamline passing through (1,1) if the velocity field is given by V = (3x)i + (3y)j. [8]
- 3. (a) Explain different methods of preventing the separation of boundary layer in detail. [8]
 - (b) Water is flowing over as thin smooth plate of length 4.5m and width 2.5m at a velocity of 0.9 m/sec. If the boundary layer flow changes from laminar to turbulent at a Reynolds number 5×10^5 find
 - i. The distance from leading edge up to which boundary layer is laminar
 - ii. Thickness of boundary layer at the transition point.
 - iii. The drag force on one side of the plate. Take viscosity of water as 0.01 poise.
- 4. (a) What is capillarity ? What are the reasons for its presence? [6]
 - (b) The relative density of a fluid is 1.26 and its dynamic viscosity is 1.5 Pa-S Calculate its specific weight and kinematic viscosity. [10]
- 5. (a) What is thermodynamic equilibrium? Explain the significance of it in quasistatic process? [2+2]
 - (b) Identify the proper type of system in each case and explain the reason for your choice.
 - i. Electric generator
 - ii. Domestic tea kettle
 - iii. Electric fan
 - iv. A living human being. [4x3=12]
- 6. (a) Derive the governing equation for the adiabatic process. [8]
 - (b) Explain Joules experiment in detail. [8]
- 7. Ten grammes of water at 20°C is converted to ice at -10°C at constant atmospheric pressure. Assuming the specific heat of liquid water to remain constant at 4.2 J/g°C and that of ice to be half of this value, and taking the latent heat of fusion of ice at 0°C to be 335J/g, calculate the total entropy change of the system. [16]

Code No: RR211401

 $\mathbf{R}\mathbf{R}$

Set No. 1

[8]

- 8. (a) A pressure vessel has a volume of 1 m³ and contains air at 1.4 MPa, 175^o C. The air is cooled to 25^oC by heat transfer to the surroundings at 25^oC. Calculate the availability in the initial and final states and the irreversibility for the process. Assume for air Cp= 1.005 kJ/kg.K and R = 0.287kJ/kg.K.
 - (b) What is third law of thermodynamics? State its significance.

R

 \mathbf{RR}

Set No. 3

II B.Tech I Semester Examinations, November 2010 THERMODYNAMICS AND FLUID MECHANICS Common to Mechatronics, Production Engineering

Time: 3 hours

Code No: RR211401

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) What is thermodynamic equilibrium? Explain the significance of it in quasistatic process? [2+2]
 - (b) Identify the proper type of system in each case and explain the reason for your choice.
 - i. Electric generator
 - ii. Domestic tea kettle
 - iii. Electric fan
 - iv. A living human being.

[4x3=12]

- 2. (a) Explain different methods of preventing the separation of boundary layer in detail. [8]
 - (b) Water is flowing over as thin smooth plate of length 4.5m and width 2.5m at a velocity of 0.9 m/sec. If the boundary layer flow changes from laminar to turbulent at a Reynolds number 5×10^5 find
 - i. The distance from leading edge up to which boundary layer is laminar
 - ii. Thickness of boundary layer at the transition point.
 - iii. The drag force on one side of the plate. Take viscosity of water as 0.01 poise.
- 3. (a) Derive the governing equation for the adiabatic process. [8]
 - (b) Explain Joules experiment in detail. [8]
- 4. (a) What is capillarity? What are the reasons for its presence? [6]
 - (b) The relative density of a fluid is 1.26 and its dynamic viscosity is 1.5 Pa-S Calculate its specific weight and kinematic viscosity. [10]
- 5. (a) A pressure vessel has a volume of 1 m³ and contains air at 1.4 MPa, 175^o C. The air is cooled to 25^oC by heat transfer to the surroundings at 25^oC. Calculate the availability in the initial and final states and the irreversibility for the process. Assume for air Cp= 1.005 kJ/kg.K and R = 0.287kJ/kg.K.

[8]

- (b) What is third law of thermodynamics? State its significance. [8]
- 6. A Rankine cycle operates between a boiler pressure of 4 MPa, 300°C and a condenser pressure of 50 kPa. Determine the thermal efficiency of the cycle, the work ratio and specific steam flow rate? [16]

Code No: RR211401

$\mathbf{R}\mathbf{R}$

Set No. 3

- 7. (a) What is the relation between velocity potential and stream function ? [8]
 - (b) Find the equation of streamline passing through (1,1) if the velocity field is given by V = (3x)i + (3y)j. [8]
- 8. Ten grammes of water at 20°C is converted to ice at -10°C at constant atmospheric pressure. Assuming the specific heat of liquid water to remain constant at 4.2 J/g°C and that of ice to be half of this value, and taking the latent heat of fusion of ice at 0°C to be 335J/g, calculate the total entropy change of the system. [16]

**** RANKE RSI