II B.Tech II Semester Examinations,December 2010 MATHEMATICS - III

Common to AE, ICE, MMT, ETM, E.CONT.E, EIE, ECE, EEE
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find the poles and residue at each pole of the function $\operatorname{cosec}^{2} \mathrm{z}$
(b) Evaluate $\int_{C} \frac{z z^{i z} d z}{\left(z^{2}+9\right)^{2}}$ where C is the circle $|z|=4$ by residue theorenn. $[8+8]$
2. (a) If $\mathrm{f}(\mathrm{z})$ is an analytic function, show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
(b) If $\tan \log (x+i y)=a+i b$ where $a^{2}+b^{2} \neq 1$ prove that
$\tan \log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=\frac{2 a}{1-a^{2}-b^{2}}$
3. (a) State and prove Laurent's theorem.
(b) Obtain the Laurent series of the fimction $\frac{7(z+2)}{(z+1)(z)(z-2)}$ about $\mathrm{z}=-1 . \quad[8+8]$
4. (a) Evaluate $\int_{C} \frac{z^{2}-z-1}{z(z-i)^{2}} d z$ with $\mathrm{C}: ~ \left\lvert\, z-\frac{1}{2} \Lambda=1\right.$, using Caucy's integral theorem.
(b) Evaluate $\int_{1+i}^{2+4 i} z^{2} d z$ along
i. the parabola $x=t, y=t^{2}$ where $1 \leq t \leq 2$
ii. the stright line joining $(1,1)$ and $(2,4)$
iii. the stright lines from $(1,1)$ to $(2,1)$ and then to $(2,4)$

What is the inference and justify.
5. (a) Prove that $1+\frac{1}{2} P_{1}(\cos \theta)+\frac{1}{3} P_{2}(\cos \theta)+\ldots .=\log \left(\frac{1+\sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}\right)$
(b) Prove that $\frac{1}{2} x J_{n}=(n+1) J_{n+1}-(n+3) J_{n+3}+(n+5) J_{n+5}-\frac{x}{2} J_{n+6}[8+8]$
6. (a) In the transformation $\mathrm{z}=(\mathrm{i}-\mathrm{w}) /(\mathrm{i}+\mathrm{w})$, show that the positive half of the w-plane given by $\mathrm{w} \geq 0$ corresponds to the circle $|\mathrm{z}| \leq 1$ in the z - plane.
(b) Show that the transformation $\mathrm{w}=\left(\mathrm{z}+\mathrm{a}^{2}\right) / \mathrm{z}$ transforms circles with origin at the centre in the z -plane in the co-axial concentric confocal ellipses in the wplane.

$$
[8+8]
$$

7. (a) Show that $\int_{0}^{1} x^{m}(\log x)^{n} d x=\frac{(-1)^{n} n!}{(m+1)^{n+1}}$ where n is a positive interger and $\mathrm{m}>-1$
(b) Show that $\beta(\mathrm{m}, \mathrm{n})=\int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} d y$

(c) Show that $\int_{0}^{\infty} x^{4} e^{-x^{2}} d x=\frac{3 \sqrt{\pi}}{8}$

8. (a) Evaluate $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta d \theta}{a^{+b} b \cos \theta}$ using residue theorem.
(b) Evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$ using residue theorem.

II B.Tech II Semester Examinations,December 2010 MATHEMATICS - III

Common to AE, ICE, MMT, ETM, E.CONT.E, EIE, ECE, EEE
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Prove that $1+\frac{1}{2} P_{1}(\cos \theta)+\frac{1}{3} P_{2}(\cos \theta)+\ldots .=\log \left(\frac{1+\sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}\right)$
(b) Prove that $\frac{1}{2} x J_{n}=(n+1) J_{n+1}-(n+3) J_{n+3}+(n+5) J_{n+5}-\frac{x}{2} J_{n+6}[8+8]$
2. (a) Evaluate $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta d \theta}{a+b \cos \theta}$ using residue theorem.
(b) Evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$ using residue theorem.
3. (a) Show that $\int_{0}^{1} x^{m}(\log x)^{n} d x=\frac{(-1)^{n} n!}{(m+1)^{n+1}}$ where n is a positive interger and $\mathrm{m}>-1$

(c) Show that $\int_{0}^{\infty} x^{4} e^{-x^{2}} d x=\frac{3 \sqrt{\pi}}{8}$

$$
[6+5+5]
$$

4. (a) State and prove Laurent's theorem.
(b) Obtain the Laurent series of the function $\frac{7 z-2}{(z+1)(z)(z-2)}$ about $\mathrm{z}=-1 . \quad[8+8]$
5. (a) Find the poles and residue at each pole of the function $\operatorname{cosec}^{2} Z$
(b) Evaluate $\int_{C} \frac{z e^{i z} d z}{\left(z^{2}+9\right)^{2}}$ where C is the circle $|z|=4$ by residue theorem. $\quad[8+8]$
6. (a) In the transformation $\mathrm{z}=(\mathrm{i}-\mathrm{w}) /(\mathrm{i}+\mathrm{w})$, show that the positive half of the w-plane given by $\mathrm{w} \geq 0$ corresponds to the circle $|\mathrm{z}| \leq 1$ in the z - plane.
(b) Show that the transformation $\mathrm{w}=\left(\mathrm{z}+\mathrm{a}^{2}\right) / \mathrm{z}$ transforms circles with origin at the centre in the z -plane in the co-axial concentric confocal ellipses in the wplane.

$$
[8+8]
$$

7. (a) Evaluate $\int_{C} \frac{z^{2}-z-1}{z(z-i)^{2}} d z$ with $\mathrm{C}: \mathbf{I} z-\frac{1}{2} \mathbf{I}=1$, using Caucy's integral theorem.
(b) Evaluate $\int_{1+i}^{2+4 i} z^{2} d z$ along
i. the parabola $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}$ where $1 \leq \mathrm{t} \leq 2$
ii. the stright line joining $(1,1)$ and $(2,4)$
iii. the stright lines from $(1,1)$ to $(2,1)$ and then to $(2,4)$

What is the inference and justify.
8. (a) If $\mathrm{f}(\mathrm{z})$ is an analytic function, show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
(b) If $\tan \log (\mathrm{x}+\mathrm{iy})=\mathrm{a}+\mathrm{ib}$ where $\mathrm{a}^{2}+\mathrm{b}^{2} \neq 1$ prove that $\tan \log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=\frac{2 a}{1-a^{2}-b^{2}}$

II B.Tech II Semester Examinations,December 2010 MATHEMATICS - III

Common to AE, ICE, MMT, ETM, E.CONT.E, EIE, ECE, EEE
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) If $\mathrm{f}(\mathrm{z})$ is an analytic function, show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
(b) If $\tan \log (x+i y)=a+i b$ where $a^{2}+b^{2} \neq 1$ prove that $\tan \log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=\frac{2 a}{1-a^{2}-b^{2}}$
2. (a) Prove that $1+\frac{1}{2} P_{1}(\cos \theta)+\frac{1}{3} P_{2}(\cos \theta)+\ldots .=\log \left(\frac{1+\sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}\right)$
(b) Prove that $\frac{1}{2} x J_{n}=(n+1) J_{n+1}-(n+3) J_{n+3}+(n-5) J_{n+5}-\frac{x}{2} J_{n+6}[8+8]$
3. (a) Evaluate $\int_{C} \frac{z^{2}-z-1}{z(z-i)^{2}} d z$ with $\mathrm{C}: \mathbf{|}_{z}-\frac{1}{2} \mathbf{|}=1$, using Caucy's integral theorem.
(b) Evaluate $\int_{1+i}^{2+4 i} z^{2} d z$ along
i. the parabola $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}$ where $1 \leq \mathrm{t} \leq 2$
ii. the stright line joining $(1,1)$ and $(2,4)$
iii. the stright lines from $(1,1)$ to $(2,1)$ and then to $(2,4)$

What is the inference and justify.
4. (a) Find the poles and residue at each pole of the function $\operatorname{cosec}^{2} z$
(b) Evaluate $\int_{C} \frac{z e^{i z} d z}{\left(z^{2}+9\right)^{2}}$ where C is the circle $|z|=4$ by residue theorem. [8+8]
5. (a) In the transformation $\mathrm{z}=(\mathrm{i}-\mathrm{w}) /(\mathrm{i}+\mathrm{w})$, show that the positive half of the w-plane given by $\mathrm{w} \geq 0$ corresponds to the circle $|\mathrm{z}| \leq 1$ in the z - plane.
(b) Show that the transformation $\mathrm{w}=\left(\mathrm{z}+\mathrm{a}^{2}\right) / \mathrm{z}$ transforms circles with origin at the centre in the z -plane in the co-axial concentric confocal ellipses in the wplane.

$$
[8+8]
$$

6. (a) Evaluate $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta d \theta}{a^{+} b \cos \theta}$ using residue theorem.
(b) Evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$ using residue theorem.
7. (a) Show that $\int_{0}^{1} x^{m}(\log x)^{n} d x=\frac{(-1)^{n} n!}{(m+1)^{n+1}}$ where n is a positive interger and $\mathrm{m}>-1$
(b) Show that $\beta(\mathrm{m}, \mathrm{n})=\int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} d y$
(c) Show that $\int_{0}^{\infty} x^{4} e^{-x^{2}} d x=\frac{3 \sqrt{\pi}}{8}$
8. (a) State and prove Laurent's theorem.
(b) Obtain the Laurent series of the function $\frac{7 z-2}{(z+1)(z)(z-2)}$ about $\mathrm{z}=-1$.

II B.Tech II Semester Examinations,December 2010 MATHEMATICS - III

Common to AE, ICE, MMT, ETM, E.CONT.E, EIE, ECE, EEE
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Evaluate $\int_{0}^{2 \pi} \frac{\sin ^{2} \theta d \theta}{a+b \cos \theta}$ using residue theorem.
(b) Evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$ using residue theorem.
2. (a) Find the poles and residue at each pole of the function $\operatorname{cosec}^{2} z$
(b) Evaluate $\int_{C} \frac{z e^{i z} d z}{\left(z^{2}+9\right)^{2}}$ where C is the circle $|z|=4$ by residue theorem. $[8+8]$
3. (a) If $\mathrm{f}(\mathrm{z})$ is an analytic function, show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
(b) If $\tan \log (x+i y)=a+i b$ where $a^{2}+b^{2} \neq 1$ prove that $\tan \log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)=\frac{2 a}{1-a^{2}-b^{2}}$
4. (a) Show that $\int^{1} x^{m}(\log x)^{n} d x=\frac{(-1)^{n} n!}{(m+1)^{n+1}}$ where n is a positive interger and $\mathrm{m}>-1$
(b) Show that $\beta(\mathrm{m}, \mathrm{n})=\int_{0}^{\infty} \frac{y^{n-1}}{(1+y)^{m+n}} d y$
(c) Show that $\int_{0}^{\infty} x^{4} e^{-x^{2}} d x=\frac{3 \sqrt{\pi}}{8}$

$$
[6+5+5]
$$

5. (a) Prove that $1+\frac{1}{2} P_{1}(\cos \theta)+\frac{1}{3} P_{2}(\cos \theta)+\ldots .=\log \left(\frac{1+\sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}\right)$
(b) Prove that $\frac{1}{2} x J_{n}=(n+1) J_{n+1}-(n+3) J_{n+3}+(n+5) J_{n+5}-\frac{x}{2} J_{n+6}[8+8]$
6. (a) State and prove Laurent's theorem.
(b) Obtain the Laurent series of the function $\frac{7 z-2}{(z+1)(z)(z-2)}$ about $\mathrm{z}=-1 . \quad[8+8]$
7. (a) Evaluate $\int_{C} \frac{z^{2}-z-1}{z(z-i)^{2}} d z$ with $\mathrm{C}: \mathbf{~}^{\prime} z-\frac{1}{2} \mathbf{I}=1$, using Caucy's integral theorem.
(b) Evaluate $\int_{1+i}^{2+4 i} z^{2} d z$ along
i. the parabola $\mathrm{x}=\mathrm{t}, \mathrm{y}=\mathrm{t}^{2}$ where $1 \leq \mathrm{t} \leq 2$
ii. the stright line joining $(1,1)$ and $(2,4)$
iii. the stright lines from $(1,1)$ to $(2,1)$ and then to $(2,4)$

What is the inference and justify.
8. (a) In the transformation $\mathrm{z}=(\mathrm{i}-\mathrm{w}) /(\mathrm{i}+\mathrm{w})$, show that the positive half of the w-plane given by $\mathrm{w} \geq 0$ corresponds to the circle $|\mathrm{z}| \leq 1$ in the z - plane.
(b) Show that the transformation $\mathrm{w}=\left(\mathrm{z}+\mathrm{a}^{2}\right) / \mathrm{z}$ transforms circles with origin at the centre in the z -plane in the co-axial concentric confocal ellipses in the wplane.
[8+8]

