RR

Set No. 2

II B.Tech II Semester Examinations, December 2010 LINEAR AND DIGITAL IC APPLICATIONS

Common to Instrumentation And Control Engineering, Electronics And
Computer Engineering, Electrical And Electronics Engineering
Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Explain the terms Lock range, Capture range and Pull-in time of a PLL. How are Lock Range and Capture range determined? [8]
 - (b) Design a PLL circuit using IC 565 to get:
 - i. Free-running frequency = $4.5 \ KHz$
 - ii. Lock range of 2 KHz and
 - iii. Capture range = 100 Hz.

Assume a supply voltage of + or - 10V. Show the circuit diagram with all component values. [3+3+2]

- 2. (a) Define the terms: SVRR,CMRR, input bias current, input offset voltage, Gain Bandwidth product.
 - (b) What are the differences between the inverting and non inverting terminals? What do you mean by the term "virtual ground"? [10+6]
- 3. (a) The 741 C Op-Amp is configured as a non-inverting amplifier having the following parameters: A=400000, R_1 =470 Ω , R_F =4.7K Ω , R_i =33M Ω , R_o =60 Ω , f_o =5Hz, Unity gain bandwidth=0.6MHz, supply voltages= ±15V, maximum output voltage swing = ±13V. Computer the values of:
 - i. A_F closed loop voltage gain,
 - ii. R_{iF} input resistance with feedback,
 - iii. R_{oF} output resistance with feedback, and
 - iv. f_F bandwidth with feedback.

 $[4\times3]$

|4|

- (b) Explain the operation of zero crossing detector using Op-Amps.
- 4. (a) List out different types of A/D converters and compare their merits and demerits.
 - (b) Give the schematic circuit of an A/D converter widely used in digital voltmeters and explain its operation. Derive expression for output voltage. [8+8]
- 5. (a) An integrator with R=400 Ω and C=1 μ F is used to generate a triangular waveform from a 500 Hz square wave that alternates between \pm 12V. What should be the minimum slew rate of the Op-amp? What is the maximum output voltage? [2×4]
 - (b) Draw and explain the operation of an analog multiplexer. [2+6]

RR

Set No. 2

- 6. (a) Compare different logic families and mention their advantages and disadvantages?
 - (b) Which is the fastest non-saturated logic gate? Draw the circuit and explain its functions. [8+8]
- 7. (a) What are the advantages of active filters over passive ones?
 - (b) Design a second order low pass Butterworth filter for a cut off frequency of 2kHz. Assume necessary data.
 - (c) What is an all pass filter? Draw the circuit of all pass filters.

[5+6+5]

8. Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer. [8+8]

2

RR

Set No. 4

II B.Tech II Semester Examinations, December 2010 LINEAR AND DIGITAL IC APPLICATIONS

Common to Instrumentation And Control Engineering, Electronics And
Computer Engineering, Electrical And Electronics Engineering
Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) List out different types of A/D converters and compare their merits and demerits.
 - (b) Give the schematic circuit of an A/D converter widely used in digital voltmeters and explain its operation. Derive expression for output voltage. [8+8]
- 2. (a) What are the advantages of active filters over passive ones?
 - (b) Design a second order low pass Butterworth filter for a cut off frequency of 2kHz. Assume necessary data.
 - (c) What is an all pass filter? Draw the circuit of all pass filters. [5+6+5]
- 3. (a) Compare different logic families and mention their advantages and disadvantages?
 - (b) Which is the fastest non-saturated logic gate? Draw the circuit and explain its functions. [8+8]
- 4. (a) Define the terms: SVRR,CMRR, input bias current, input offset voltage, Gain Bandwidth product.
 - (b) What are the differences between the inverting and non inverting terminals? What do you mean by the term "virtual ground"? [10+6]
- 5. (a) Explain the terms Lock range, Capture range and Pull-in time of a PLL. How are Lock Range and Capture range determined? [8]
 - (b) Design a PLL circuit using IC 565 to get:
 - i. Free-running frequency = $4.5 \ KHz$
 - ii. Lock range of 2 KHz and
 - iii. Capture range = $100 \ Hz$.

Assume a supply voltage of + or - 10V. Show the circuit diagram with all component values. [3+3+2]

- 6. (a) An integrator with R=400 Ω and C=1 μ F is used to generate a triangular waveform from a 500 Hz square wave that alternates between \pm 12V. What should be the minimum slew rate of the Op-amp? What is the maximum output voltage? [2×4]
 - (b) Draw and explain the operation of an analog multiplexer. [2+6]

RR

Set No. 4

Code No: RR220203

- 7. Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer. [8+8]
- 8. (a) The 741C Op-Amp is configured as a non-inverting amplifier having the following parameters: A=400000, R_1 =470 Ω , R_F =4.7K Ω , R_i =33M Ω , R_o =60 Ω , f_o =5Hz, Unity gain bandwidth=0.6MHz, supply voltages= ± 15 V, maximum output voltage swing = ± 13 V. Computer the values of:
 - i. A_F closed loop voltage gain,
 - ii. R_{iF} input resistance with feedback,
 - iii. R_{oF} output resistance with feedback, and
 - iv. f_F bandwidth with feedback.

(b) Explain the operation of zero crossing detector using Op-Amps.

 $[4\times3]$

RR

Set No. 1

II B.Tech II Semester Examinations, December 2010 LINEAR AND DIGITAL IC APPLICATIONS

Common to Instrumentation And Control Engineering, Electronics And
Computer Engineering, Electrical And Electronics Engineering
Time: 3 hours

Max Marks: 80

Answer any FIVE Questions
All Questions carry equal marks

- 1. (a) An integrator with R=400 Ω and C=1 μ F is used to generate a triangular waveform from a 500 Hz square wave that alternates between \pm 12V. What should be the minimum slew rate of the Op-amp? What is the maximum output voltage? [2×4]
 - (b) Draw and explain the operation of an analog multiplexer. [2+6]
- 2. (a) What are the advantages of active filters over passive ones?
 - (b) Design a second order low pass Butterworth filter for a cut off frequency of 2kHz. Assume necessary data.
 - (c) What is an all pass filter? Draw the circuit of all pass filters. [5+6+5]
- 3. (a) The 741C Op-Amp is configured as a non-inverting amplifier having the following parameters: A=400000, $R_1=470\Omega$, $R_F=4.7\mathrm{K}\Omega$, $R_i=33\mathrm{M}\Omega$, $R_o=60\Omega$, $f_o=5\mathrm{Hz}$, Unity gain bandwidth=0.6MHz, supply voltages= $\pm15\mathrm{V}$, maximum output voltage swing = $\pm13\mathrm{V}$. Computer the values of:
 - i. A_F closed loop voltage gain,
 - ii. R_{iF} input resistance with feedback,
 - iii. R_{oF} output resistance with feedback, and
 - iv. f_F bandwidth with feedback.

 $[4\times3]$

- (b) Explain the operation of zero crossing detector using Op-Amps.
- [4]
- 4. (a) Define the terms: SVRR,CMRR, input bias current, input offset voltage, Gain Bandwidth product.
 - (b) What are the differences between the inverting and non inverting terminals? What do you mean by the term "virtual ground"? [10+6]
- 5. (a) Compare different logic families and mention their advantages and disadvantages?
 - (b) Which is the fastest non-saturated logic gate? Draw the circuit and explain its functions. [8+8]
- (a) List out different types of A/D converters and compare their merits and demerits.
 - (b) Give the schematic circuit of an A/D converter widely used in digital voltmeters and explain its operation. Derive expression for output voltage. [8+8]

RR

Set No. 1

7. Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer. [8+8]

- 8. (a) Explain the terms Lock range, Capture range and Pull-in time of a PLL. How are Lock Range and Capture range determined? [8]
 - (b) Design a PLL circuit using IC 565 to get:
 - i. Free-running frequency = $4.5 \ KHz$
 - ii. Lock range of 2 KHz and
 - iii. Capture range = 100 Hz.

Assume a supply voltage of + or - 10V. Show the circuit diagram with all component values. [3+3+2]

6

RR

Set No. 3

II B.Tech II Semester Examinations, December 2010 LINEAR AND DIGITAL IC APPLICATIONS

Common to Instrumentation And Control Engineering, Electronics And
Computer Engineering, Electrical And Electronics Engineering
Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Explain the terms Lock range, Capture range and Pull-in time of a PLL. How are Lock Range and Capture range determined? [8]
 - (b) Design a PLL circuit using IC 565 to get:
 - i. Free-running frequency = $4.5 \ KHz$
 - ii. Lock range of 2 KHz and
 - iii. Capture range = 100 Hz.

Assume a supply voltage of + or - 10V. Show the circuit diagram with all component values. [3+3+2]

- 2. Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer. [8+8]
- 3. (a) List out different types of A/D converters and compare their merits and demerits.
 - (b) Give the schematic circuit of an A/D converter widely used in digital voltmeters and explain its operation. Derive expression for output voltage. [8+8]
- 4. (a) The 741C Op-Amp is configured as a non-inverting amplifier having the following parameters: A=400000, R_1 =470 Ω , R_F =4.7K Ω , R_i =33M Ω , R_o =60 Ω , f_o =5Hz, Unity gain bandwidth=0.6MHz, supply voltages= ±15V, maximum output voltage swing = ±13V. Computer the values of:
 - i. A_F closed loop voltage gain,
 - ii. R_{iF} input resistance with feedback,
 - iii. R_{oF} output resistance with feedback, and
 - iv. f_F bandwidth with feedback.

 $[4\times3]$

- (b) Explain the operation of zero crossing detector using Op-Amps.
- [4]
- 5. (a) Define the terms: SVRR, CMRR, input bias current, input offset voltage, Gain Bandwidth product.
 - (b) What are the differences between the inverting and non inverting terminals? What do you mean by the term "virtual ground"? [10+6]
- 6. (a) Compare different logic families and mention their advantages and disadvantages?

RR

Set No. 3

- (b) Which is the fastest non-saturated logic gate? Draw the circuit and explain its functions. [8+8]
- 7. (a) What are the advantages of active filters over passive ones?
 - (b) Design a second order low pass Butterworth filter for a cut off frequency of 2kHz. Assume necessary data.
 - (c) What is an all pass filter? Draw the circuit of all pass filters.

[5+6+5]

- 8. (a) An integrator with R=400 Ω and C=1 μ F is used to generate a triangular waveform from a 500 Hz square wave that alternates between \pm 12V. What should be the minimum slew rate of the Op-amp? What is the maximum output voltage? [2×4]
 - (b) Draw and explain the operation of an analog multiplexer.

2+6]