\mathbf{RR}

Set No. 2

III B.Tech I Semester Examinations, November 2010 THERMAL ENGINEERING - II Mechanical Engineering

Time: 3 hours

Code No: RR310303

Max Marks: 80

 $[4 \times 4]$

Answer any FIVE Questions All Questions carry equal marks *****

- 1. State the differences between the following boilers:
 - (a) Externally fired and internally fired.
 - (b) Forced circulation and Natural circulation
 - (c) High Pressure and Low pressure
 - (d) Stationery and mobile.
- 2. An open cycle gas turbine plant has a single stage compressor and a single stage expander incorporating a heat exchanger. The air suction temperature is 17° C and the pressure 1 bar. For an over all pressure ratio of 4.5 and shaft output of 4000kW, The mass flow is 40kg/s. If the thermal ratio of heat exchanger is 0.6 and the isentropic efficiency of compressor is 0.84, calculate the isentropic efficiency of the gas turbine for a plant thermal efficiency of 0.29.take $\gamma = 1.4$., Cpg = 1.07kJ/kg. [16]
- 3. (a) Sketch a combined velocity diagram with reference to steam turbines. Name and mark all angles and velocities on it.
 - (b) In a stage of impulse reaction turbine operating with 50% degree of reaction, the blades are identical in shape. The outlet angle of the moving blades is 19° and the absolute discharge velocity of steam is 100m/s in the direction at 100° to the motion of the blades. If the rate of flow of steam through the turbine is 15000 kg/hr, calculate the power developed by the turbine in kW. [8+8]
- 4. The air leakage into a surface condenser operating with a steam turbine is estimated as 84 Kg/hr. The vacuum near the inlet of air pump is 700 mm of Hg. When Barometer reads 760 mm of Hg. The temp. at the inlet of vacuum pump is 20^oC.Calculate
 - (a) Min. capacity of air pump in m^3/hr .
 - (b) The dimensions of the reciprocating air pump to remove the air if it run at 200 RPM and L/D ratio=1.5 and volumetric efficiency =100%.
 - (c) The mass of vapour extracted per minute. [16]
- 5. The outlet area of a nozzle in a simple impulse turbine is 15 cm^3 and the steam leaves the nozzles at 14 N/cm^2 , 0.9 dry with a velocity 650 m/s. The nozzle is inclined at 20^0 to the plane of the wheel, the blade speed is 250 m/sec, the blade exit angle is 30^0 and the blade velocity coefficient is 0.8. Estimate the power developed and specific steam consumption. [16]

Code No: RR310303

RR

Set No. 2

6. Discuss the theory of the rocket engine.

[16]

[16]

- 7. (a) Explain with a neat sketch the working of a ram jet engine.
 - (b) What do meant by semi-cryogenic nature of a propellant? List the different propellants used in a rocket engine. [8+8]
- 8. Steam expands in a nozzle under the following conditions: inlet pressure = 15bar; inlet temperature = 250° C; Final pressure = 4 bar; mass flow rate = 1 kg/s. Calculate the required throat and exit areas, using Mollier diagram, when
 - (a) the expansion is frictionless and
 - (b) the friction loss is 10% of the total heat drop.

RANKE RST

 \mathbf{RR}

Set No. 4

III B.Tech I Semester Examinations, November 2010 THERMAL ENGINEERING - II Mechanical Engineering

Time: 3 hours

Code No: RR310303

Max Marks: 80

 $[4 \times 4]$

[16]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. State the differences between the following boilers:
 - (a) Externally fired and internally fired.
 - (b) Forced circulation and Natural circulation
 - (c) High Pressure and Low pressure
 - (d) Stationery and mobile.
- 2. An open cycle gas turbine plant has a single stage compressor and a single stage expander incorporating a heat exchanger. The air suction temperature is 17° C and the pressure 1 bar. For an over all pressure ratio of 4.5 and shaft output of 4000kW, The mass flow is 40kg/s. If the thermal ratio of heat exchanger is 0.6 and the isentropic efficiency of compressor is 0.84, calculate the isentropic efficiency of the gas turbine for a plant thermal efficiency of 0.29.take $\gamma = 1.4$., Cpg = 1.07kJ/kg. [16]
- 3. The air leakage into a surface condenser operating with a steam turbine is estimated as 84 Kg/hr. The vacuum near the inlet of air pump is 700 mm of Hg. When Barometer reads 760 mm of Hg. The temp. at the inlet of vacuum pump is 20^oC.Calculate
 - (a) Min. capacity of air pump in m^3/hr .
 - (b) The dimensions of the reciprocating air pump to remove the air if it run at 200 RPM and L/D ratio=1.5 and volumetric efficiency =100%.
 - (c) The mass of vapour extracted per minute. [16]
- 4. Discuss the theory of the rocket engine.
- 5. The outlet area of a nozzle in a simple impulse turbine is 15 cm^3 and the steam leaves the nozzles at 14 N/cm^2 , 0.9 dry with a velocity 650 m/s. The nozzle is inclined at 20^0 to the plane of the wheel, the blade speed is 250 m/sec, the blade exit angle is 30^0 and the blade velocity coefficient is 0.8. Estimate the power developed and specific steam consumption. [16]
- 6. Steam expands in a nozzle under the following conditions: inlet pressure = 15 bar; inlet temperature = 250°C; Final pressure = 4 bar; mass flow rate = 1 kg/s. Calculate the required throat and exit areas, using Mollier diagram, when
 - (a) the expansion is frictionless and

Code No: RR310303

RS

Set No. 4

(b) the friction loss is 10% of the total heat drop. [16]

RR

- 7. (a) Explain with a neat sketch the working of a ram jet engine.
 - (b) What do meant by semi-cryogenic nature of a propellant? List the different propellants used in a rocket engine. [8+8]
- 8. (a) Sketch a combined velocity diagram with reference to steam turbines. Name and mark all angles and velocities on it.
 - (b) In a stage of impulse reaction turbine operating with 50% degree of reaction, the blades are identical in shape. The outlet angle of the moving blades is 19° and the absolute discharge velocity of steam is 100m/s in the direction at 100° to the motion of the blades. If the rate of flow of steam through the turbine is 15000 kg/hr, calculate the power developed by the turbine in kW.

[8+8]

RR

Set No. 1

III B.Tech I Semester Examinations, November 2010 THERMAL ENGINEERING - II Mechanical Engineering

Time: 3 hours

Code No: RR310303

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Explain with a neat sketch the working of a ram jet engine.
 - (b) What do meant by semi-cryogenic nature of a propellant? List the different propellants used in a rocket engine. [8+8]
- 2. An open cycle gas turbine plant has a single stage compressor and a single stage expander incorporating a heat exchanger. The air suction temperature is 17°C and the pressure 1 bar. For an over all pressure ratio of 4.5 and shaft output of 4000kW, The mass flow is 40kg/s. If the thermal ratio of heat exchanger is 0.6 and the isentropic efficiency of compressor is 0.84, calculate the isentropic efficiency of the gas turbine for a plant thermal efficiency of 0.29 take $\gamma = 1.4$., Cpg = 1.07kJ/kg. [16]
- 3. (a) Sketch a combined velocity diagram with reference to steam turbines. Name and mark all angles and velocities on it.
 - (b) In a stage of impulse reaction turbine operating with 50% degree of reaction, the blades are identical in shape. The outlet angle of the moving blades is 19⁰ and the absolute discharge velocity of steam is 100m/s in the direction at 100⁰to the motion of the blades. If the rate of flow of steam through the turbine is 15000 kg/hr, calculate the power developed by the turbine in kW. [8+8]
- 4. Steam expands in a nozzle under the following conditions: inlet pressure = 15 bar; inlet temperature = 250° C; Final pressure = 4 bar; mass flow rate = 1 kg/s. Calculate the required throat and exit areas, using Mollier diagram, when
 - (a) the expansion is frictionless and
 - (b) the friction loss is 10% of the total heat drop. [16]
- 5. The air leakage into a surface condenser operating with a steam turbine is estimated as 84 Kg/hr. The vacuum near the inlet of air pump is 700 mm of Hg. When Barometer reads 760 mm of Hg. The temp. at the inlet of vacuum pump is 20⁰C.Calculate
 - (a) Min. capacity of air pump in m^3/hr .
 - (b) The dimensions of the reciprocating air pump to remove the air if it run at 200 RPM and L/D ratio=1.5 and volumetric efficiency =100%.
 - (c) The mass of vapour extracted per minute.

[16]

www.firstranker.com

Code No: RR310303

RR

Set No. 1

 $[4 \times 4]$

[16]

6. State the differences between the following boilers:

- (a) Externally fired and internally fired.
- (b) Forced circulation and Natural circulation
- (c) High Pressure and Low pressure
- (d) Stationery and mobile.

7. Discuss the theory of the rocket engine.

Re

8. The outlet area of a nozzle in a simple impulse turbine is 15 cm^3 and the steam leaves the nozzles at 14 N/cm^2 , 0.9 dry with a velocity 650 m/s. The nozzle is inclined at 20^0 to the plane of the wheel, the blade speed is 250 m/sec, the blade exit angle is 30^0 and the blade velocity coefficient is 0.8. Estimate the power developed and specific steam consumption. [16]

6

RR

Set No. 3

III B.Tech I Semester Examinations, November 2010 THERMAL ENGINEERING - II Mechanical Engineering

Time: 3 hours

Code No: RR310303

Max Marks: 80

[16]

[16]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Steam expands in a nozzle under the following conditions: inlet pressure = 15bar; inlet temperature = 250° C; Final pressure = 4 bar; mass flow rate = 1 kg/s. Calculate the required throat and exit areas, using Mollier diagram, when
 - (a) the expansion is frictionless and
 - (b) the friction loss is 10% of the total heat drop.
- 2. The air leakage into a surface condenser operating with a steam turbine is estimated as 84 Kg/hr. The vacuum near the inlet of air pump is 700 mm of Hg. When Barometer reads 760 mm of Hg. The temp. at the inlet of vacuum pump is 20[°]C.Calculate
 - (a) Min. capacity of air pump in m^3/hr
 - (b) The dimensions of the reciprocating air pump to remove the air if it run at 200 RPM and L/D ratio=1.5 and volumetric efficiency =100%.
 - (c) The mass of vapour extracted per minute. [16]
- 3. Discuss the theory of the rocket engine.
- 4. (a) Explain with a neat sketch the working of a ram jet engine.
 - (b) What do meant by semi-cryogenic nature of a propellant? List the different propellants used in a rocket engine. [8+8]
- 5. State the differences between the following boilers:
 - (a) Externally fired and internally fired.
 - (b) Forced circulation and Natural circulation
 - (c) High Pressure and Low pressure
 - (d) Stationery and mobile. $[4 \times 4]$
- 6. (a) Sketch a combined velocity diagram with reference to steam turbines. Name and mark all angles and velocities on it.
 - (b) In a stage of impulse reaction turbine operating with 50% degree of reaction, the blades are identical in shape. The outlet angle of the moving blades is 19^{0} and the absolute discharge velocity of steam is 100 m/s in the direction at 100° to the motion of the blades. If the rate of flow of steam through the turbine is 15000 kg/hr, calculate the power developed by the turbine in kW.

[8+8]

Code No: RR310303

RR

Set No. 3

[16]

- 7. The outlet area of a nozzle in a simple impulse turbine is 15 cm^3 and the steam leaves the nozzles at 14 N/cm^2 , 0.9 dry with a velocity 650 m/s. The nozzle is inclined at 20^0 to the plane of the wheel, the blade speed is 250 m/sec, the blade exit angle is 30^0 and the blade velocity coefficient is 0.8. Estimate the power developed and specific steam consumption. [16]
- 8. An open cycle gas turbine plant has a single stage compressor and a single stage expander incorporating a heat exchanger. The air suction temperature is 17^{0} C and the pressure 1 bar. For an over all pressure ratio of 4.5 and shaft output of 4000kW, The mass flow is 40kg/s. If the thermal ratio of heat exchanger is 0.6 and the isentropic efficiency of compressor is 0.84, calculate the isentropic efficiency of the gas turbine for a plant thermal efficiency of 0.29.take $\gamma = 1.4$., Cpg = 1.07kJ/kg.