RR

Set No. 2

III B.Tech I Semester Examinations, November 2010 LINEAR AND DIGITAL IC APPLICATIONS Common to BME, MECT, ETM, E.CONT.E, EIE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Explain in detail the following terms with reference to PLL
 - i. Lock range

Code No: RR311001

- ii. Capture range
- iii. Capture transient
- iv. Pull-in-time.

[8]

- (b) i. Draw the internal functional diagram of NE 566 VCO and derive expression for free running frequency.
 - ii. From the given component values find the free running frequency Control voltage $V_C=10.9V$, $V_{CC}=12V$, $R_1=4.7k$ and $C_1=1.1nF$.

8

2. (a) Define the terms

[4]

- i. Positive logic
- ii. Negative logic
- (b) Show that positive logic EX-OR operation is equivalent to nagative logic EX-NOR operation . [4]
- (c) Draw the circuit 3 input D.T.L. NAND gate and explain its operation with the help of truth-table. How can you improve the Fan-out of the corcuit. Explain with the help of modified circuit. [8]
- 3. (a) Explain the operation of a delay equalizer circuit with neat sketches. Derive an expression relating input and output voltages of the equalizer. [8+2]
 - (b) For the all pass filter, determine the phase shift between input and output at f=2 kHz. To obtain a positive phase shift. What modifications are necessary in the circuit? [6]
- 4. (a) What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]
 - (b) Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8]
- 5. (a) Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer.

 [10]
 - (b) Design a Monostable multivibrator using 555 timer to produce a pulse width of 100 m sec. [6]

RR

Set No. 2

6.	(a)	List and explain the two special cases of inverting amplifiers.	[6]
	(b)	What is a voltage follower? What are its features and applications?	[4]
	(c)	Derive the expression for the output voltage of a non inverting amplifier	[6]
7.	(a)	Compare different A/D converters for their merits and demerits.	[8]
	(b)	Give the schematic circuit diagram of a successive approximation type A converter and explain the operations of this system.	/D [8]
8.	(a)	What is an OP-AMP? Why it is called so?	[4]
	(b)	Explain the parameters that should be considered for ac and dc application of an OP-AMP	ns [5]
	(c)	Draw and explain the three open loop OP-AMP configurations with ne circuit diagram	eat [7]

2

RR

Set No. 4

III B.Tech I Semester Examinations, November 2010 LINEAR AND DIGITAL IC APPLICATIONS Common to BME, MECT, ETM, E.CONT.E, EIE

Ti

ime	: 3	nours Max Marks: 80
		Answer any FIVE Questions
		All Questions carry equal marks

1.	(a)	Explain in detail the following terms with reference to PLL
		i. Lock range
		ii. Capture range
		iii. Capture transient
		iv. Pull-in-time. [8]
	(b)	i. Draw the internal functional diagram of NE 566 VCO and derive expression for free number frequency.
		sion for free running frequency.
		ii. From the given component values find the free running frequency Control voltage $V_C = 10.9V$, $V_{CC} = 12V$, $R_1 = 4.7k$ and $C_1 = 1.1nF$.
		(8)
	()	
2.	. ,	List and explain the two special cases of inverting amplifiers. [6]
	(b)	What is a voltage follower? What are its features and applications? [4]
	(c)	Derive the expression for the output voltage of a non inverting amplifier [6]
3.	(a)	What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]
	(b)	Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8]
4.	(a)	Define the terms [4]
		i. Positive logic
		ii. Negative logic
	(b)	Show that positive logic EX-OR operation is equivalent to nagative logic EX-NOR operation . $\ensuremath{[4]}$
	(c)	Draw the circuit 3 input D.T.L. NAND gate and explain its operation with the help of truth-table. How can you improve the Fan-out of the corcuit. Explain with the help of modified circuit. [8]
5.	(a)	What is an OP-AMP? Why it is called so? [4]
	(b)	Explain the parameters that should be considered for ac and dc applications of an OP-AMP [5]
	(c)	Draw and explain the three open loop OP-AMP configurations with neat circuit diagram [7]

RR

Set No. 4

- 6. (a) Explain the operation of a delay equalizer circuit with neat sketches. Derive an expression relating input and output voltages of the equalizer. [8+2]
 - (b) For the all pass filter, determine the phase shift between input and output at f=2 kHz. To obtain a positive phase shift. What modifications are necessary in the circuit? [6]
- 7. (a) Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer.

 [10]
 - (b) Design a Monostable multivibrator using 555 timer to produce a pulse width of 100 m sec. [6]
- 8. (a) Compare different A/D converters for their merits and demerits. [8]
 - (b) Give the schematic circuit diagram of a successive approximation type A/D converter and explain the operations of this system. [8]

RR

Set No. 1

[6]

III B.Tech I Semester Examinations, November 2010 LINEAR AND DIGITAL IC APPLICATIONS Common to BME, MECT, ETM, E.CONT.E, EIE

 T^{i}

ime:	3	hours Max Marks: 80
		Answer any FIVE Questions
		All Questions carry equal marks

1	<i>(</i>)	
1.	(a)	What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]
	(b)	Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8]
2.	(a)	What is an OP-AMP? Why it is called so? [4]
	(b)	Explain the parameters that should be considered for ac and dc applications of an OP-AMP [5]
	(c)	Draw and explain the three open loop QP-AMP configurations with neat circuit diagram [7]
3.	(a)	Define the terms [4]
	. ,	i. Positive logic ii. Negative logic
	(b)	Show that positive logic EX-OR operation is equivalent to nagative logic EX-NOR operation . $\ensuremath{\mbox{ [4]}}$
	(c)	Draw the circuit 3 input D.T.L. NAND gate and explain its operation with the help of truth-table. How can you improve the Fan-out of the corcuit. Explain with the help of modified circuit. [8]
4.	(a)	Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer. [10]
	(b)	Design a Monostable multivibrator using 555 timer to produce a pulse width of $100~\mathrm{m}$ sec. [6]
5.	(a)	Explain the operation of a delay equalizer circuit with neat sketches. Derive an expression relating input and output voltages of the equalizer. [8+2]
	(b)	For the all pass filter, determine the phase shift between input and output at f=2 kHz. To obtain a positive phase shift. What modifications are necessary in the circuit? [6]
6.	(a)	List and explain the two special cases of inverting amplifiers. [6]
	(b)	What is a voltage follower? What are its features and applications? [4]

(c) Derive the expression for the output voltage of a non inverting amplifier

RR

Set No. 1

- 7. (a) Compare different A/D converters for their merits and demerits. [8]
 - (b) Give the schematic circuit diagram of a successive approximation type A/D converter and explain the operations of this system. [8]
- 8. (a) Explain in detail the following terms with reference to PLL
 - i. Lock range

Code No: RR311001

- ii. Capture range
- iii. Capture transient
- iv. Pull-in-time. [8]
- (b) i. Draw the internal functional diagram of NE 566 VCO and derive expression for free running frequency.
 - ii. From the given component values find the free running frequency Control voltage $V_C=10.9V$, $V_{CC}=12V$, $R_1{=}4.7k$ and $C_1{=}1.1nF$.

[8]

 $\mathbf{R}\mathbf{R}$

Set No. 3

[10]

III B.Tech I Semester Examinations, November 2010 LINEAR AND DIGITAL IC APPLICATIONS Common to BME, MECT, ETM, E.CONT.E, EIE

Time: 3 hours Max Marks: 80

Answer any	FIVE	Ques	tions
All Questions	carry	equal	marks

1.	(a)	What is an OP-AMP? Why it is called so? [4]
	(b)	Explain the parameters that should be considered for ac and dc applications of an OP-AMP [5]
	(c)	Draw and explain the three open loop OP-AMP configurations with neat circuit diagram [7]
2.	(a)	List and explain the two special cases of inverting amplifiers. [6]
	(b)	What is a voltage follower? What are its features and applications? [4]
	(c)	Derive the expression for the output voltage of a non inverting amplifier [6]
3.	(a)	Compare different A/D converters for their merits and demerits. [8]
	(b)	Give the schematic circuit diagram of a successive approximation type A/D converter and explain the operations of this system. [8]
4.	(a)	Explain the operation of a delay equalizer circuit with neat sketches. Derive an expression relating input and output voltages of the equalizer. [8+2]
	(b)	For the all pass filter, determine the phase shift between input and output at $f=2 \text{ kHz}$. To obtain a positive phase shift. What modifications are necessary in the circuit? [6]
5.	(a)	Define the terms [4]
		i. Positive logicii. Negative logic
	(b)	Show that positive logic EX-OR operation is equivalent to nagative logic EX-NOR operation . [4]
	(c)	Draw the circuit 3 input D.T.L. NAND gate and explain its operation with the help of truth-table. How can you improve the Fan-out of the corcuit. Explain with the help of modified circuit. [8]
6.	(a)	What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]
	(b)	Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8]
7.	(a)	Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer.

RR

Set No. 3

- (b) Design a Monostable multivibrator using 555 timer to produce a pulse width of 100 m sec. [6]
- 8. (a) Explain in detail the following terms with reference to PLL
 - i. Lock range

Code No: RR311001

- ii. Capture range
- iii. Capture transient
- iv. Pull-in-time.
- (b) i. Draw the internal functional diagram of NE 566 VCO and derive expression for free running frequency.
 - ii. From the given component values find the free running frequency Control voltage $V_C=10.9V$, $V_{CC}=12V$, $R_1{=}4.7k$ and $C_1{=}1.1nF$.

[8]

[8]