RR

III B.Tech II Semester Examinations, December 2010 MODELLING OF POWER SYSTEM COMPONENTS Electrical And Electronics Engineering

Time: 3 hours

Code No: RR320203

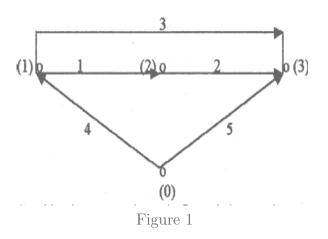
Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

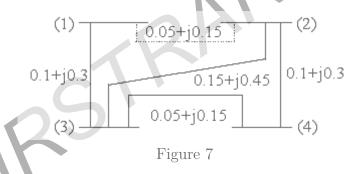
1. (a) Develop the mathematical model of primary and secondary Control Loops and derive the transfer functions of each block.

(b) $D\epsilon$	b) Determine the primary Automatic load frequency control loop parameters for				
the	e following system data:				
То	tal rated area capacity	=	2000 Mw		
No	rmal operating load	=	$1000 \mathrm{Mw}$		
Ine	ertia constant	=	5 sec.		
Re	gulation	=	2.4 hz/ p.u. Mw		
As	sume load frequency depending is	linear.		[10+6]	

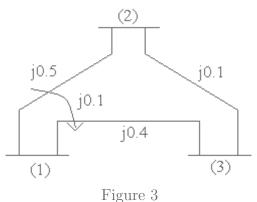
- 2. A synchronous generator is connected to an infinite bus through a transmission line. Neglecting the resistances draw the phasor diagram and derive the
 - (a) Relation between active power and power angle.
 - (b) Relation between reactive power and power angle. [8+8]
- 3. (a) Prove that when there is no mutual coupling the diagonal and off-diagonal elements of the admittance Y_{Bus} can be computed from $Y_{ii} = \sum_{i} Y_{ij}$


and $Y_{ij} = -Y_{ij}$

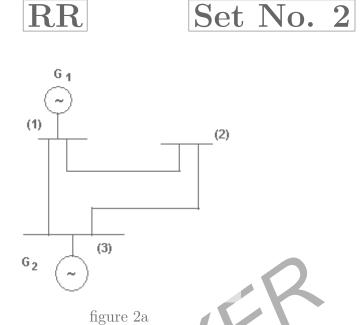
where Y_{ij} is the sum of the admittance of all the lines connecting buses i and j. [4]


- (b) Consider the linear graph shown in Figure 1, which represents a 3-bus transmission system with all the shunt admittance lumped together. Each line has a series impedance of (0.02 + J0.08) and half line charging admittance of J0.02,
 - i. Compute Y_{Bus} by inspection
 - ii. Compute Z_{Bus} analytically
 - iii. Verify $Y_{Bus}Z_{Bus} = U$.

[4+5+3]



- 4. Figure shows the one line diagram of a 4-bus system. Impedances in p.u. are indicated in the figure 7.
 - (a) Find Y_{Bus} assuming that the line shown dotted is not connected
 - (b) What modifications need to be carried out in Y_{Bus} if the line shown dotted is connected. [10+6]



5. For the system shown in figure 3, obtain Z_{Bus} by Z_{Bus} building algorithm. Take bus(1) as reference. All impedances are in p.u. [16]

- 6. (a) Explain about the various performance requirements of excitation system.
 - (b) Explain the elements of an excitation system.
- 7. (a) Obtain the tie-set schedule in three phase representation for the following power system network's. As shown in figure 2a.

[8+8]

- (b) Develop the primitive network three phase representation of elements in impedance and admittance forms. [6+10]
- 8. (a) Define the following terms with suitable example: Basic
 - i. tree
 - ii. branches
 - iii. links
 - iv. co-tree
 - v. loop.
 - (b) Write the relation among the number of nodes, number of branches, number of Links and number of elements.
 - (c) For the graph given in figure 4, draw the tree and the corresponding co-tree. Choose a tree of your choice, and hence write the cutest schedule. [5+2+9]

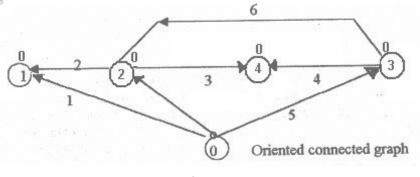


figure 4

RR

III B.Tech II Semester Examinations, December 2010 MODELLING OF POWER SYSTEM COMPONENTS Electrical And Electronics Engineering

Time: 3 hours

Code No: RR320203

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Define the following terms with suitable example: Basic
 - i. tree
 - ii. branches
 - iii. links
 - iv. co-tree
 - v. loop.
 - (b) Write the relation among the number of nodes, number of branches, number of Links and number of elements.
 - (c) For the graph given in figure 4, draw the tree and the corresponding co-tree. Choose a tree of your choice, and hence write the cutest schedule. [5+2+9]

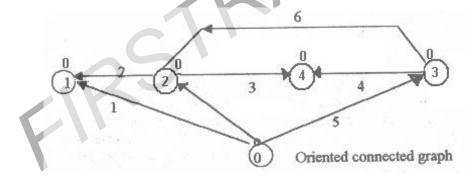
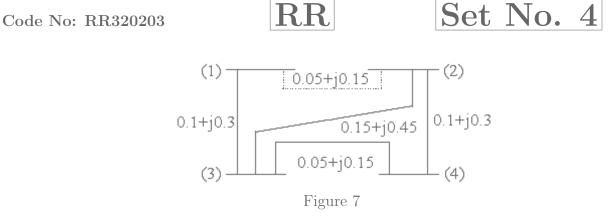
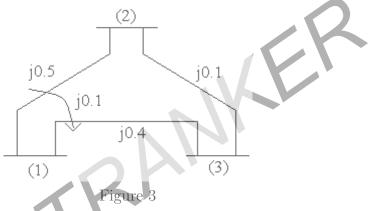
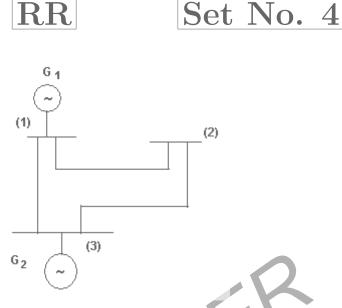




figure 4

- 2. A synchronous generator is connected to an infinite bus through a transmission line. Neglecting the resistances draw the phasor diagram and derive the
 - (a) Relation between active power and power angle.
 - (b) Relation between reactive power and power angle. [8+8]
- 3. (a) Explain about the various performance requirements of excitation system.
 - (b) Explain the elements of an excitation system. [8+8]
- 4. Figure shows the one line diagram of a 4-bus system. Impedances in p.u. are indicated in the figure 7.
 - (a) Find Y_{Bus} assuming that the line shown dotted is not connected
 - (b) What modifications need to be carried out in Y_{Bus} if the line shown dotted is connected. [10+6]


5. For the system shown in figure 3, obtain Z_{Bus} by Z_{Bus} building algorithm. Take bus(1) as reference. All impedances are in p.u. [16]

6. (a) Develop the mathematical model of primary and secondary Control Loops and derive the transfer functions of each block.

(b)	Determine the primary Automatic lo	ad frequ	ency control loop parame	eters for	
	the following system data:				
	Total rated area capacity	=	2000 Mw		
	Normal operating load	=	1000 Mw		
	Inertia constant	=	5 sec.		
	Regulation	=	2.4 hz/ p.u. Mw		
	Assume load frequency depending is linear.				

7. (a) Obtain the tie-set schedule in three phase representation for the following power system network's. As shown in figure 2a.

[4+5+3]

figure 2a

- (b) Develop the primitive network three phase representation of elements in impedance and admittance forms. [6+10]
- 8. (a) Prove that when there is no mutual coupling the diagonal and off-diagonal elements of the admittance Y_{Bus} can be computed from $Y_{ii} = \sum_{j} Y_{ij}$

and $Y_{ij} = -Y_{ij}$ where Y_{ij} is the sum of the admittance of all the lines connecting buses i and j. [4]

- (b) Consider the linear graph shown in Figure 1, which represents a 3-bus transmission system with all the shunt admittance lumped together. Each line has a series impedance of (0.02 + J0.08) and half line charging admittance of J0.02,
 - i. Compute Y_{Bus} by inspection
 - ii. Compute Z_{Bus} analytically
 - iii. Verify $Y_{Bus}Z_{Bus} = U$.

 \mathbf{RR}

III B.Tech II Semester Examinations, December 2010 MODELLING OF POWER SYSTEM COMPONENTS Electrical And Electronics Engineering

Time: 3 hours

Code No: RR320203

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Define the following terms with suitable example: Basic
 - i. tree
 - ii. branches
 - iii. links
 - iv. co-tree
 - v. loop.
 - (b) Write the relation among the number of nodes, number of branches, number of Links and number of elements.
 - (c) For the graph given in figure 4, draw the tree and the corresponding co-tree. Choose a tree of your choice, and hence write the cutest schedule. [5+2+9]

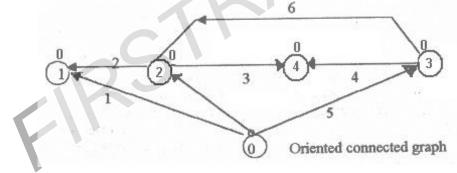


figure 4

2. (a) Obtain the tie-set schedule in three phase representation for the following power system network's. As shown in figure 2a.

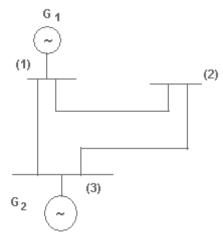
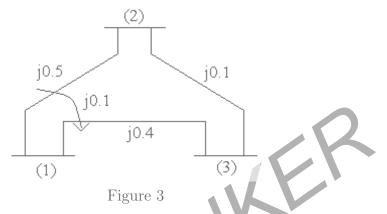


figure 2a


www.firstranker.com

Code No: RR320203

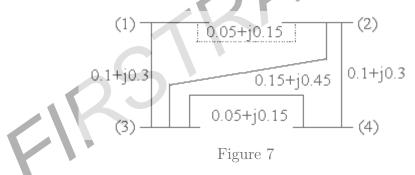
RR

Set No. 1

- (b) Develop the primitive network three phase representation of elements in impedance and admittance forms. [6+10]
- 3. For the system shown in figure 3, obtain Z_{Bus} by Z_{Bus} building algorithm. Take bus(1) as reference. All impedances are in p.u. [16]

- 4. (a) Develop the mathematical model of primary and secondary Control Loops and derive the transfer functions of each block.
 - (b) Determine the primary Automatic load frequency control loop parameters for the following system data: Total rated area capacity = 2000 Mw
 Normal operating load = 1000 Mw
 Inertia constant = 5 sec.
 Regulation = 2.4 hz/ p.u. Mw
 Assume load frequency depending is linear. [10+6]
- 5. A synchronous generator is connected to an infinite bus through a transmission line. Neglecting the resistances draw the phasor diagram and derive the
 - (a) Relation between active power and power angle.
 - (b) Relation between reactive power and power angle. [8+8]
- 6. (a) Prove that when there is no mutual coupling the diagonal and off-diagonal elements of the admittance Y_{Bus} can be computed from $Y_{ii} = \sum_{i} Y_{ij}$

and $Y_{ij} = -Y_{ij}$ where Y_{ij} is the sum of the admittance of all the lines connecting buses i and j. [4]


- (b) Consider the linear graph shown in Figure 1, which represents a 3-bus transmission system with all the shunt admittance lumped together. Each line has a series impedance of (0.02 + J0.08) and half line charging admittance of J0.02,
 - i. Compute Y_{Bus} by inspection
 - ii. Compute Z_{Bus} analytically

\mathbf{RR}

Set No. 1

iii. Verify $Y_{Bus}Z_{Bus} = U$. [4+5+3] (1) (1) (1) (1) (1) (2) (2) (2) (2) (3) (0) Figure 1

- 7. Figure shows the one line diagram of a 4-bus system. Impedances in p.u. are indicated in the figure 7.
 - (a) Find Y_{Bus} assuming that the line shown dotted is not connected
 - (b) What modifications need to be carried out in Y_{Bus} if the line shown dotted is connected. [10+6]

- 8. (a) Explain about the various performance requirements of excitation system.
 - (b) Explain the elements of an excitation system. [8+8]

RR

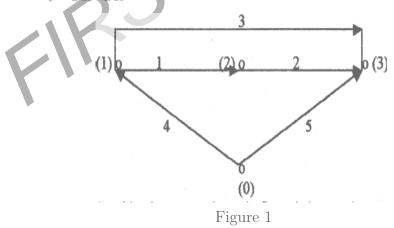
III B.Tech II Semester Examinations, December 2010 MODELLING OF POWER SYSTEM COMPONENTS Electrical And Electronics Engineering

Time: 3 hours

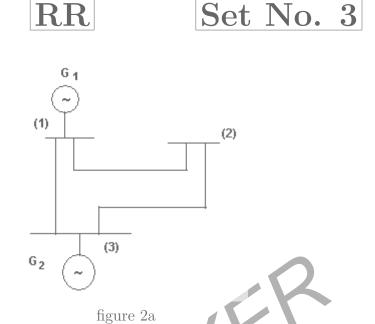
Code No: RR320203

Max Marks: 80

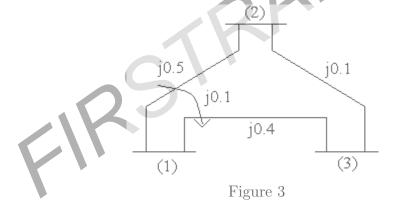
Answer any FIVE Questions All Questions carry equal marks *****

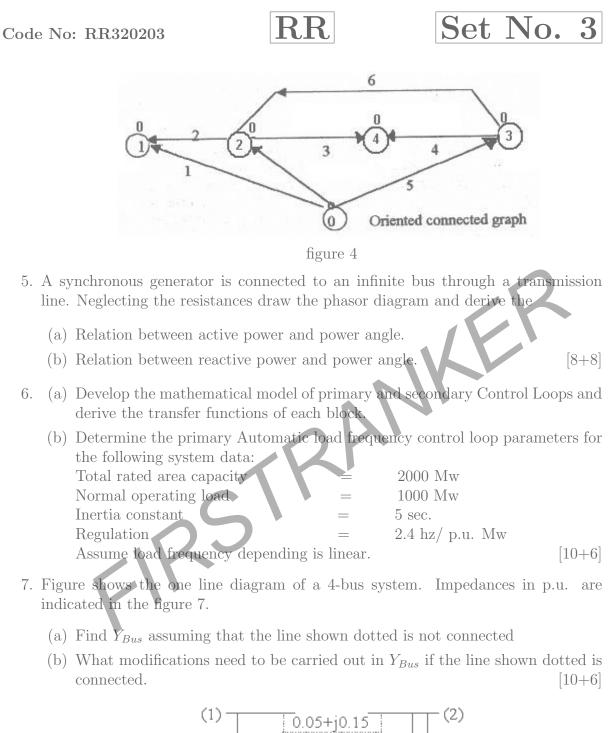

1. (a) Prove that when there is no mutual coupling the diagonal and off-diagonal elements of the admittance Y_{Bus} can be computed from $Y_{ii} = \sum Y_{ii}$

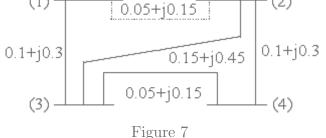
$$Y_{ii} = \sum_{j} Y_{ij}$$


and $Y_{ij} = -Y_{ij}$ where Y_{ij} is the sum of the admittance of all the lines connecting buses i and j. [4]

- (b) Consider the linear graph shown in Figure 1, which represents a 3-bus transmission system with all the shunt admittance lumped together. Each line has a series impedance of (0.02 + J0.08) and half line charging admittance of J0.02,
 - i. Compute Y_{Bus} by inspection
 - ii. Compute Z_{Bus} analytically
 - iii. Verify $Y_{Bus}Z_{Bus} = 1$


[4+5+3]


2. (a) Obtain the tie-set schedule in three phase representation for the following power system network's. As shown in figure 2a.



- (b) Develop the primitive network three phase representation of elements in impedance and admittance forms. [6+10]
- 3. For the system shown in figure 3, obtain Z_{Bus} by Z_{Bus} building algorithm. Take bus(1) as reference. All impedances are in p.u. [16]

- 4. (a) Define the following terms with suitable example: Basic
 - i. tree
 - ii. branches
 - iii. links
 - iv. co-tree
 - v. loop.
 - (b) Write the relation among the number of nodes, number of branches, number of Links and number of elements.
 - (c) For the graph given in figure 4, draw the tree and the corresponding co-tree. Choose a tree of your choice, and hence write the cutest schedule. [5+2+9]

- 8. (a) Explain about the various performance requirements of excitation system.
 - (b) Explain the elements of an excitation system. [8+8]
