III B.Tech II Semester Examinations,December 2010 COMPUTER GRAPHICS Computer Science And Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Discuss about the characteristics of the following illumination parameters.
i. Diffuse reflection
ii. Specular reflection and
iii. Refraction.
(b) At a surface point p , if the surface normal, light vector and sight vectors are given by $n=j, L=-I+2 j-k$ and $s=I+1.5 j+0.5 k$ respectively, find the vector of reflected ray and the angle it is making with surface normal. [9+7]
2. Discuss about the techniques to achieve the simple animation effects.
3. What is meant by aliasing? Discuss about the two antialiasing methods.
4. (a) Demonstrate with suitable figures how the arbitrary vector L passing through the origin in 3-D space aligns with Z-axis, in two steps.
(b) List the sequence of operations to perform a φ-degrees rotation about vector L.
5. (a) Explain about the conversion from RGB to HLS system.
(b) Describe the unit cube defined in R, G and B axes.
6. (a) Explain the terms
i. Framebuffer
ii. Resolution
(b) Suppose an RGB raster system is to be designed using 8 inch by 10 inch screen with a resolution of 100 pixels per inch in each direction. If we want to store 6 bits per primary color per pixel, how much storage (in bytes) do we need for the frame buffer?
7. (a) Discuss the steps involved in mid-point subdivision algorithm.
(b) What are the limitations of mid-point subdivision algorithm?
8. (a) Reflect the point $p(10,10)$ about the line $y=x+2$ using 2-D transformations.
(b) Rotate the point $\mathrm{p}(2,-4)$ about the origin 45^{0} in clock-wise direction. $[8+8]$

III B.Tech II Semester Examinations,December 2010 COMPUTER GRAPHICS Computer Science And Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Discuss the steps involved in mid-point subdivision algorithm.
(b) What are the limitations of mid-point subdivision algorithm?
2. (a) Discuss about the characteristics of the following illumination parameters.
i. Diffuse reflection
ii. Specular reflection and
iii. Refraction.
(b) At a surface point p , if the surface normal, light vector and sight vectors are given by $n=j, L=-I+2 j-k$ and $s=I+1.5 j+05 k$ respectively, find the vector of reflected ray and the angle it is making with surface normal. [9+7]
3. Discuss about the techniques to achiere the simple animation effects.
4. (a) Demonstrate with suitable figures how the arbitrary vector L passing through the origin in 3-D spaee aligns with Z-axis, in two steps.
(b) List the sequence of operations to perform a φ-degrees rotation about vector L.
5. What is meant by aliasing? Discuss about the two antialiasing methods.
6. (a) Explain the terms
i. Framebuffer
ii. Resolution
(b) Suppose an RGB raster system is to be designed using 8 inch by 10 inch screen with a resolution of 100 pixels per inch in each direction. If we want to store 6 bits per primary color per pixel, how much storage (in bytes) do we need for the frame buffer?
7. (a) Explain about the conversion from RGB to HLS system.
(b) Describe the unit cube defined in R, G and B axes.
8. (a) Reflect the point $p(10,10)$ about the line $y=x+2$ using $2-\mathrm{D}$ transformations.
(b) Rotate the point $\mathrm{p}(2,-4)$ about the origin 45^{0} in clock-wise direction. $[8+8]$

III B.Tech II Semester Examinations,December 2010 COMPUTER GRAPHICS Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Reflect the point $\mathrm{p}(10,10)$ about the line $\mathrm{y}=\mathrm{x}+2$ using 2 -D transformations.
(b) Rotate the point $\mathrm{p}(2,-4)$ about the origin 45^{0} in clock-wise direction. [8+8]
2. (a) Demonstrate with suitable figures how the arbitrary vector L passing through the origin in 3-D space aligns with Z-axis, in two steps.
(b) List the sequence of operations to perform a φ-degrees rotation about vector L.
3. (a) Discuss the steps involved in mid-point subdivision algorithm.
(b) What are the limitations of mid-point subdivision algorithm? $[8+8]$
4. (a) Explain about the conversion from RGB to HLS system.
(b) Describe the unit cube defined in R, G and B axes.
5. (a) Explain the terms
i. Framebuffer
ii. Besolution
(b) Suppose an RGB raster system is to be designed using 8 inch by 10 inch screen with a resolution of 100 pixels per inch in each direction. If we want to store 6 bits per primary color per pixel, how much storage (in bytes) do we need for the frame buffer?
6. Discuss about the techniques to achieve the simple animation effects.
7. (a) Discuss about the characteristics of the following illumination parameters.
i. Diffuse reflection
ii. Specular reflection and
iii. Refraction.
(b) At a surface point p , if the surface normal, light vector and sight vectors are given by $\mathrm{n}=\mathrm{j}, \mathrm{L}=-\mathrm{I}+2 \mathrm{j}-\mathrm{k}$ and $\mathrm{s}=\mathrm{I}+1.5 \mathrm{j}+05 \mathrm{k}$ respectively, find the vector of reflected ray and the angle it is making with surface normal. [9+7]
8. What is meant by aliasing? Discuss about the two antialiasing methods.

III B.Tech II Semester Examinations,December 2010 COMPUTER GRAPHICS Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Reflect the point $\mathrm{p}(10,10)$ about the line $\mathrm{y}=\mathrm{x}+2$ using 2 -D transformations.
(b) Rotate the point $\mathrm{p}(2,-4)$ about the origin 45^{0} in clock-wise direction. [8+8]
2. What is meant by aliasing? Discuss about the two antialiasing methods
3. (a) Explain the terms
i. Framebuffer
ii. Resolution
(b) Suppose an RGB raster system is to be designed using 8 inch by 10 inch screen with a resolution of 100 pixels per inch in each direction. If we want to store 6 bits per primary color per pixel, how much storage (in bytes) do we need for the frame buffer? $[10+6]$
4. (a) Explain about the eonversion from RGB to HLS system.
(b) Describe the mit cube defined in R, G and B axes.
5. (a) Discuss about the characteristics of the following illumination parameters.

Diffuse reflection
ii. Specular reflection and
iii. Refraction.
(b) At a surface point p , if the surface normal, light vector and sight vectors are given by $n=j$, $L=-I+2 j-k$ and $s=I+1.5 j+05 k$ respectively, find the vector of reflected ray and the angle it is making with surface normal. [9+7]
6. (a) Demonstrate with suitable figures how the arbitrary vector L passing through the origin in 3-D space aligns with Z-axis, in two steps.
(b) List the sequence of operations to perform a φ-degrees rotation about vector L.
7. Discuss about the techniques to achieve the simple animation effects.
8. (a) Discuss the steps involved in mid-point subdivision algorithm.
(b) What are the limitations of mid-point subdivision algorithm?

