\mathbf{RR}

IV B.Tech I Semester Examinations,November 2010 DIGITAL SIGNAL PROCESSING Electrical And Electronics Engineering urs Max Marks: 80

Time: 3 hours

Code No: RR410201

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Determine the frequency response , magnitude response and phase response for the system given by $y(n) \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) x(n-1)$
 - (b) A causal LTI system is described by the difference equation y(n) = y(n-1) + y(n-2) + x(n-1), where x(n) is the input and y(n) is the output. Find
 - i. The system function H(Z)=Y(Z)/X(Z) for the system, plot the poles and zeroes of H(Z) and indicate the region of convergence.
 - ii. The unit sample response of the system.
 - iii. Is this system stable or not?

[6+10]

 (a) Define a linear-time invariant system in discrete time. Define the terms causality and stability of such systems. Discuss the properties for the following sequences.

$$y(n) = \begin{cases} x(n), for \ n \ge 1\\ 0, for \ n = 0\\ x(n+1), for \ n \le -1 \end{cases}$$

- (b) Find the:
 - i. impulse response and
 - ii. output response for a step input applied at n=0 of a discrete time linear time invariant system whose difference equation is given by y(n) = y(n-1)+0.5 y(n-2)+x(n)+x(n-1). [8+8]
- 3. (a) Explain the factors that influence the choice of structure for realisation of a LTI system.
 - (b) An LTI system is described by the difference equation y (n) = a₁y (n 1) + x (n) + b₁x (n 1)
 Realize it in direct form I structure and convert it to direct form II structure.
- 4. Design a Digital IIR low pass filter with pass band edge at 1000 Hz and stop band edge at 1500 Hz for a sampling frequency of 5000 Hz. The filter is to have a pass band ripple of 0.5 db and stop band ripple below 30 db. Design Butter worth filler using both impulse invariant and Bilinear transformations. [16]
- 5. (a) Define Infinite Impulse Response & Finite Impulse Response filters and compare.

www.firstranker.com

Code No: RR410201

(b) Design a low pass Finite Impulse Response filter with a rectangular window for a five stage filter given: Sampling time 1 msec; $f_c = 200Hz$ Draw the filter structure with minimum number of multipliers. [6+10]

RR

- 6. (a) Explain the inverse FFT algorithm to compute inverse DFT of a N=8. Draw the flow graph for the same.
 - (b) Compute the FFT for the sequence $\{1, 0, 0, 0, 0, 0, 0, 0, 0\}$ [8+8]
- 7. (a) State and prove the circular time shifting and frequency shifting properties of the DFT.
 - (b) Compute the circular convolution of the sequences $x_1(n) = \{1, 2, 0, 1\}$ and $x_2(n) = \{2, 2, 1, 1\}$ Using DFT approach.
- 8. (a) Let x(n) and $X(e^{jw})$ represent a sequence and its transform. Determine, in terms of $X(e^{jw})$, the transform of each of the following sequences :
 - i. k x(n), k = any constant
 - ii. $x(n-n_0), n_0 = a$ real integer
 - (b) By explicitly evaluating the transforms $X(e^{jw})$, $H(e^{jw})$ and $Y(e^{jw})$ corresponding to x(n), h(n) and y(n) specified in part (a) show that $Y(e^{jw}) = H(e^{jw})X(e^{jw})$

[8+8]

[8+8]

Set No. 2

 \mathbf{RR}

Max Marks: 80

IV B.Tech I Semester Examinations, November 2010 DIGITAL SIGNAL PROCESSING Electrical And Electronics Engineering

Time: 3 hours

Code No: RR410201

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) State and prove the circular time shifting and frequency shifting properties of the DFT.
 - (b) Compute the circular convolution of the sequences x₁(n) = {1, 2, 0, 1} and x₂(n) = {2, 2, 1, 1} Using DFT approach.
- Design a Digital IIR low pass filter with pass band edge at 1000 Hz and stop band edge at 1500 Hz for a sampling frequency of 5000 Hz. The filter is to have a pass band ripple of 0.5 db and stop band ripple below 30 db. Design Butter worth filler using both impulse invariant and Bilinear transformations. [16]
- 3. (a) Define Infinite Impulse Response & Finite Impulse Response filters and compare.
 - (b) Design a low pass Finite Impulse Response filter with a rectangular window for a five stage filter given: Sampling time 1 msec; $f_c = 200Hz$

Draw the filter structure with minimum number of multipliers. [6+10]

4. (a) Define a linear-time invariant system in discrete time. Define the terms causality and stability of such systems. Discuss the properties for the following sequences.

$$y(n) = \begin{cases} x(n), for \ n \ge 1\\ 0, for \ n = 0\\ x(n+1), for \ n \le -1 \end{cases}$$

- (b) Find the:
 - i. impulse response and
 - ii. output response for a step input applied at n=0 of a discrete time linear time invariant system whose difference equation is given by y(n) = y(n-1)+0.5 y(n-2)+x(n)+x(n-1). [8+8]
- 5. (a) Let x(n) and $X(e^{jw})$ represent a sequence and its transform. Determine, in terms of $X(e^{jw})$, the transform of each of the following sequences :
 - i. k x(n), k = any constant
 - ii. $x(n-n_0), n_0 = a$ real integer
 - (b) By explicitly evaluating the transforms $X(e^{jw})$, $H(e^{jw})$ and $Y(e^{jw})$ corresponding to x(n), h(n) and y(n) specified in part (a) show that $Y(e^{jw}) = H(e^{jw})X(e^{jw})$

[8+8]

www.firstranker.com

Code No: RR410201

RR

Set No. 4

[6+10]

- 6. (a) Determine the frequency response , magnitude response and phase response for the system given by $y(n) \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) x(n-1)$
 - (b) A causal LTI system is described by the difference equation y(n)=y(n-1)+y(n-2)+x(n-1), where x(n) is the input and y(n) is the output. Find
 - i. The system function H(Z)=Y(Z)/X(Z) for the system, plot the poles and zeroes of H(Z) and indicate the region of convergence.
 - ii. The unit sample response of the system.
 - iii. Is this system stable or not?

R

- 7. (a) Explain the inverse FFT algorithm to compute inverse DFT of a N=8. Draw the flow graph for the same.
- 8. (a) Explain the factors that influence the choice of structure for realisation of a LTI system.
 - (b) An LTI system is described by the difference equation $y(n) = a_1 y(n-1) + x(n) + b_1 x(n-1)$

Realize it in direct form I structure and convert it to direct form II structure. [4+12]

 \mathbf{RR}

K

IV B.Tech I Semester Examinations,November 2010 DIGITAL SIGNAL PROCESSING Electrical And Electronics Engineering urs Max Marks: 80

Time: 3 hours

Code No: RR410201

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Define a linear-time invariant system in discrete time. Define the terms causality and stability of such systems. Discuss the properties for the following sequences.

$$y(n) = \begin{cases} x(n), for \ n \ge 1\\ 0, for \ n = 0\\ x(n+1), for \ n \end{cases}$$

- (b) Find the:
 - i. impulse response and
 - ii. output response for a step input applied at n=0 of a discrete time linear time invariant system whose difference equation is given by y(n) = y(n-1)+0.5 y(n-2)+x(n)+x(n-1). [8+8]
- 2. (a) Define Infinite Impulse Response & Finite Impulse Response filters and compare.
 - (b) Design a low pass Finite Impulse Response filter with a rectangular window for a five stage filter given: Sampling time 1 msec; $f_c = 200Hz$ Draw the filter structure with minimum number of multipliers. [6+10]
- 3. (a) Let x(n) and $X(e^{jw})$ represent a sequence and its transform. Determine, in terms of $X(e^{jw})$, the transform of each of the following sequences :
 - i. k x(n), k = any constant
 - ii. $x(n-n_0), n_0 = a$ real integer
 - (b) By explicitly evaluating the transforms X(e^{jw}), H(e^{jw})andY(e^{jw}) corresponding to x(n), h(n) and y(n) specified in part (a) show that Y(e^{jw}) = H(e^{jw})X(e^{jw})
 [8+8]
- 4. (a) Explain the inverse FFT algorithm to compute inverse DFT of a N=8. Draw the flow graph for the same.
 - (b) Compute the FFT for the sequence $\{1, 0, 0, 0, 0, 0, 0, 0, 0\}$ [8+8]
- 5. (a) State and prove the circular time shifting and frequency shifting properties of the DFT.
 - (b) Compute the circular convolution of the sequences $x_1(n) = \{1, 2, 0, 1\}$ and $x_2(n) = \{2, 2, 1, 1\}$ Using DFT approach. [8+8]

Code No: RR410201

$\mathbf{R}\mathbf{R}$

Set No. 1

- 6. (a) Explain the factors that influence the choice of structure for realisation of a LTI system.
 - (b) An LTI system is described by the difference equation $y(n) = a_1 y(n-1) + x(n) + b_1 x(n-1)$ Realize it in direct form I structure and convert it to direct form II structure.
- 7. (a) Determine the frequency response , magnitude response and phase response for the system given by $y(n) \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) x(n-1)$
 - (b) A causal LTI system is described by the difference equation y(n)=y(n-1)+y(n-2)+x(n-1), where x(n) is the input and y(n) is the output. Find
 - i. The system function H(Z)=Y(Z)/X(Z) for the system, plot the poles and zeroes of H(Z) and indicate the region of convergence.
 - ii. The unit sample response of the system.
 - iii. Is this system stable or not?

[6+10]

[4+12]

8. Design a Digital IIR low pass filter with pass band edge at 1000 Hz and stop band edge at 1500 Hz for a sampling frequency of 5000 Hz. The filter is to have a pass band ripple of 0.5 db and stop band ripple below 30 db. Design Butter worth filler using both impulse invariant and Bilinear transformations. [16]

 \mathbf{RR}

IV B.Tech I Semester Examinations,November 2010 DIGITAL SIGNAL PROCESSING Electrical And Electronics Engineering urs Max Marks: 80

Time: 3 hours

Code No: RR410201

Answer any FIVE Questions All Questions carry equal marks ****

1. (a) Define a linear-time invariant system in discrete time. Define the terms causality and stability of such systems. Discuss the properties for the following sequences.

$$y(n) = \begin{cases} x(n), for \ n \ge 1\\ 0, \ for \ n = 0\\ x(n+1), for \ n \le n \end{cases}$$

- (b) Find the:
 - i. impulse response and
 - ii. output response for a step input applied at n=0 of a discrete time linear time invariant system whose difference equation is given by y(n) = y(n-1)+0.5 y(n-2)+x(n)+x(n-1). [8+8]
- 2. (a) Define Infinite Impulse Response & Finite Impulse Response filters and compare.
 - (b) Design a low pass Finite Impulse Response filter with a rectangular window for a five stage filter given: Sampling time 1 msec; $f_c = 200Hz$ Draw the filter structure with minimum number of multipliers. [6+10]
- 3. (a) Determine the frequency response , magnitude response and phase response for the system given by $y(n) \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) x(n-1)$
 - (b) A causal LTI system is described by the difference equation y(n)=y(n-1)+y(n-2)+x(n-1), where x(n) is the input and y(n) is the output. Find
 - i. The system function H(Z)=Y(Z)/X(Z) for the system, plot the poles and zeroes of H(Z) and indicate the region of convergence.
 - ii. The unit sample response of the system.
 - iii. Is this system stable or not? [6+10]
- 4. (a) State and prove the circular time shifting and frequency shifting properties of the DFT.
 - (b) Compute the circular convolution of the sequences $x_1(n) = \{1, 2, 0, 1\}$ and $x_2(n) = \{2, 2, 1, 1\}$ Using DFT approach. [8+8]
- 5. (a) Explain the factors that influence the choice of structure for realisation of a LTI system.

Code No: RR410201

(b) An LT

An LTI system is described by the difference equation
$$y(n) = a_1 y(n-1) + x(n) + b_1 x(n-1)$$

RR

Realize it in direct form I structure and convert it to direct form II structure. [4+12]

Set No. 3

[8+8]

- 6. (a) Let x(n) and $X(e^{jw})$ represent a sequence and its transform. Determine, in terms of $X(e^{jw})$, the transform of each of the following sequences :
 - i. k x(n), k = any constant
 - ii. $x(n-n_0), n_0 = a$ real integer
 - (b) By explicitly evaluating the transforms $X(e^{jw})$, $H(e^{jw})$ and $Y(e^{jw})$ corresponding to x(n), h(n) and y(n) specified in part (a) show that $Y(e^{jw}) = H(e^{jw})X(e^{jw})$
- 7. Design a Digital IIR low pass filter with pass band edge at 1000 Hz and stop band edge at 1500 Hz for a sampling frequency of 5000 Hz. The filter is to have a pass band ripple of 0.5 db and stop band ripple below 30 db. Design Butter worth filler using both impulse invariant and Bilinear transformations. [16]
- 8. (a) Explain the inverse FFT algorithm to compute inverse DFT of a N=8. Draw the flow graph for the same.
 - [8+8]

