\mathbf{RR}

Set No. 2

IV B.Tech I Semester Examinations, NOVEMBER 2010 POWER SEMICONDUCTOR DRIVES Electrical And Electronics Engineering

Time: 3 hours

Code No: RR410202

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- (a) For stator voltage control scheme of a 3-phase Induction motor discuss about speed range, regeneration, harmonics, torque pulsating, power factor, cost, efficiency and applications.
 - (b) Draw a block schematic diagram for automatic speed control of 3 phase cage Induction motor using solid state AC Voltage Controller on stator side. [8+8]
- 2. Draw the block diagram of a closed loop synchronous motor drive fed from VSI and explain. [16]
- 3. A class-A chopper, operating in time-ratio control, is supplying the armature of the separately excited dc motor. Show that the motor speed-torque relationship is $\omega_m = \frac{\delta . V}{K} \frac{R_a}{K^2} T_a$, Where V chopper input voltage, R_a Armature resistance, Ta motor torque, K- torque constant. [16]
- 4. How is the output voltage of a VSI improved by PWM techniques? Explain how you will use this converter for speed control of a synchronous motor. [16]
- 5. (a) Explain how four-quadrant operation is achieved by dual converters each of 3 ϕ full wave configuration for d.c. separately excited motor.
 - (b) Distinguish between circulating current and non-circulating current mode of operation. [10+6]
- 6. (a) With neat circuit diagram and waveforms, explain dynamic braking of separately excited motor by single phase converter.
 - (b) A dc shunt motor has the armature resistance of 0.04Ω and the field winding resistance of 10Ω . Motor is coupled to an over hauling load with a torque of 400N-m. Following magnetization curve was measured at 600 rpm:

Field Current, A	2.5	5	7.5	10	12.5	15.	17.5	20	22.5	25
Back emf, v	25	50	73.5	90	102.5	110	116	121	125	129

Calculate the value of R_B when the motor is required to hold overhauling load at 1200 rpm. [8+8]

- 7. (a) Compare CSI and VSI drives.
 - (b) Show that a variable frequency Induction motor drive develops at all frequencies the same torque for a given slip-speed when operating at constant flux.

[8+8]

Code No: RR410202

 $\mathbf{R}\mathbf{R}$

Set No. 2

- 8. (a) Draw and explain a closed loop operation for a static Kramer controlled drive.
 - (b) In which way a static Kramer Control is different from static Scherbius drive? [10+6]

RANKER

 \mathbf{RR}

Set No. 4

IV B.Tech I Semester Examinations, NOVEMBER 2010 POWER SEMICONDUCTOR DRIVES Electrical And Electronics Engineering

Time: 3 hours

Code No: RR410202

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. How is the output voltage of a VSI improved by PWM techniques? Explain how you will use this converter for speed control of a synchronous motor. [16]
- 2. (a) For stator voltage control scheme of a 3-phase Induction motor discuss about speed range, regeneration, harmonics, torque pulsating, power factor, cost, efficiency and applications.
 - (b) Draw a block schematic diagram for automatic speed control of 3 phase cage Induction motor using solid state AC Voltage Controller on stator side. [8+8]
- 3. (a) With neat circuit diagram and waveforms, explain dynamic braking of separately excited motor by single phase converter.
 - (b) A dc shunt motor has the armature resistance of 0.04Ω and the field winding resistance of 10Ω . Motor is coupled to an over hauling load with a torque of 400N-m. Following magnetization curve was measured at 600 rpm:

Field Current, A 2.5 5	7.5	10	12.5	15.	17.5	20	22.5	25
Back emf, v = 25 50	73.5	90	102.5	110	116	121	125	129

Calculate the value of R_B when the motor is required to hold overhauling load at 1200 rpm. [8+8]

- 4. Draw the block diagram of a closed loop synchronous motor drive fed from VSI and explain. [16]
- 5. A class-A chopper, operating in time-ratio control, is supplying the armature of the separately excited dc motor. Show that the motor speed-torque relationship is $\omega_m = \frac{\delta . V}{K} \frac{R_a}{K^2} T_a$, Where V chopper input voltage, R_a Armature resistance, Ta motor torque, K- torque constant. [16]
- 6. (a) Compare CSI and VSI drives.
 - (b) Show that a variable frequency Induction motor drive develops at all frequencies the same torque for a given slip-speed when operating at constant flux.

[8+8]

- 7. (a) Explain how four-quadrant operation is achieved by dual converters each of 3 ϕ full wave configuration for d.c. separately excited motor.
 - (b) Distinguish between circulating current and non-circulating current mode of operation. [10+6]

Code No: RR410202

 $\mathbf{R}\mathbf{R}$

Set No. 4

- 8. (a) Draw and explain a closed loop operation for a static Kramer controlled drive.
 - (b) In which way a static Kramer Control is different from static Scherbius drive? [10+6]

 \mathbf{RR}

Set No. 1

IV B.Tech I Semester Examinations, NOVEMBER 2010 POWER SEMICONDUCTOR DRIVES Electrical And Electronics Engineering

Time: 3 hours

Code No: RR410202

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. A class-A chopper, operating in time-ratio control, is supplying the armature of the separately excited dc motor. Show that the motor speed-torque relationship is $\omega_m = \frac{\delta . V}{K} \frac{R_a}{K^2} T_a$, Where V chopper input voltage, R_a Armature resistance, Ta motor torque, K- torque constant. [16]
- 2. (a) Explain how four-quadrant operation is achieved by dual converters each of 3 ϕ full wave configuration for d.c. separately excited motor.
 - (b) Distinguish between circulating current and non-circulating current mode of operation. [10+6]
- 3. (a) Compare CSI and VSI drives.
 - (b) Show that a variable frequency induction motor drive develops at all frequencies the same torque for a given slip-speed when operating at constant flux.
 [8+8]
- 4. How is the output voltage of a VSI improved by PWM techniques? Explain how you will use this converter for speed control of a synchronous motor. [16]
- 5. (a) Draw and explain a closed loop operation for a static Kramer controlled drive.
 - (b) In which way a static Kramer Control is different from static Scherbius drive? [10+6]
- 6. (a) With neat circuit diagram and waveforms, explain dynamic braking of separately excited motor by single phase converter.
 - (b) A dc shunt motor has the armature resistance of 0.04Ω and the field winding resistance of 10Ω . Motor is coupled to an over hauling load with a torque of 400N-m. Following magnetization curve was measured at 600 rpm:

Field Current, A	2.5	5	7.5	10	12.5	15.	17.5	20	22.5	25
Back emf, v	25	50	73.5	90	102.5	110	116	121	125	129

Calculate the value of R_B when the motor is required to hold overhauling load at 1200 rpm. [8+8]

- 7. Draw the block diagram of a closed loop synchronous motor drive fed from VSI and explain. [16]
- 8. (a) For stator voltage control scheme of a 3-phase Induction motor discuss about speed range, regeneration, harmonics, torque pulsating, power factor, cost, efficiency and applications.

Code No: RR410202

 \mathbf{RR}

Set No. 1

(b) Draw a block schematic diagram for automatic speed control of 3 phase cage Induction motor using solid state AC Voltage Controller on stator side. [8+8]

RR

Set No. 3

IV B.Tech I Semester Examinations, NOVEMBER 2010 POWER SEMICONDUCTOR DRIVES Electrical And Electronics Engineering

Time: 3 hours

Code No: RR410202

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) Explain how four-quadrant operation is achieved by dual converters each of 3 ϕ full wave configuration for d.c. separately excited motor.
 - (b) Distinguish between circulating current and non-circulating current mode of operation. [10+6]
- 2. (a) Compare CSI and VSI drives.
 - (b) Show that a variable frequency Induction motor drive develops at all frequencies the same torque for a given slip-speed when operating at constant flux.

[8+8]

- 3. A class-A chopper, operating in time-ratio control, is supplying the armature of the separately excited dc motor. Show that the motor speed-torque relationship is $\omega_m = \frac{\delta V}{K} \frac{R_a}{K^2}T_a$, Where V chopper input voltage, R_a Armature resistance, Ta motor torque, K- torque constant. [16]
- 4. Draw the block diagram of a closed loop synchronous motor drive fed from VSI and explain. [16]
- 5. How is the output voltage of a VSI improved by PWM techniques? Explain how you will use this converter for speed control of a synchronous motor. [16]
- (a) For stator voltage control scheme of a 3-phase Induction motor discuss about speed range, regeneration, harmonics, torque pulsating, power factor, cost, efficiency and applications.
 - (b) Draw a block schematic diagram for automatic speed control of 3 phase cage Induction motor using solid state AC Voltage Controller on stator side. [8+8]
- 7. (a) With neat circuit diagram and waveforms, explain dynamic braking of separately excited motor by single phase converter.
 - (b) A dc shunt motor has the armature resistance of 0.04Ω and the field winding resistance of 10Ω . Motor is coupled to an over hauling load with a torque of 400N-m. Following magnetization curve was measured at 600 rpm:

Field Current, A	2.5	5	7.5	10	12.5	15.	17.5	20	22.5	25
Back emf, v	25	50	73.5	90	102.5	110	116	121	125	129

Calculate the value of R_B when the motor is required to hold overhauling load at 1200 rpm. [8+8]

Code No: RR410202

 $\mathbf{R}\mathbf{R}$

Set No. 3

- 8. (a) Draw and explain a closed loop operation for a static Kramer controlled drive.
 - (b) In which way a static Kramer Control is different from static Scherbius drive? [10+6]

RANGE