IV B.Tech I Semester Examinations,November 2010 ADVANCED CONTROL SYSTEMS
Electrical And Electronics Engineering
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain Minimum - Time problem?
(b) Explain State Regulator problem in brief?
2. (a) Consider a linear system described by the differential equation $y+2 y+y=$ $\stackrel{\circ}{\mathrm{u}}+u$ Test for controllability and observability.
(b) Define and explain the concept of controllability
3. (a) Find U * for the system $\dot{x}=-\mathrm{x}+\mathrm{ux}(0)=1$ which minimizes

$$
J=\frac{1}{2} \int_{0}^{2}\left(x^{2}+u^{2}\right) d t
$$

(b) What is a Hamiltonian. Formulate the optimal control problem in terms of Hamiltonian.
4. (a) A single-input system is described by the following state equation.

$$
\dot{X}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
1 & -2 & 0 \\
0 & 1 & -3
\end{array}\right] x+\left[\begin{array}{c}
10 \\
1 \\
0
\end{array}\right] u
$$

Design a state feedback controller which will give closed-loop poles at $1 \pm \mathrm{j} 2,-6$.
(b) Draw the block diagram and deduce the expression for transfer function for the controller-observer.
5. Obtain the Hamilton- Jacobi equation for the system
$\mathrm{X}_{1}=\mathrm{X}_{2}$
$\mathrm{X}_{2}=2 \mathrm{X}_{1}+4$
$\mathrm{J}=\mathrm{X}(0)=0$
To minimize
$\mathrm{J}=1 / 2 \mathrm{X}^{2}\left(\mathrm{t}_{1}\right) \int_{0}^{t_{1}} 1 / 2\left(x_{1}^{2}+x_{2}^{2}+u^{2}\right) d t$
Final t_{1} is specified. $\mathrm{U}(\mathrm{t})$ and $\mathrm{X}(\mathrm{t})$ are not constrained.
6. Check the stability of the system described by
$\dot{x}_{1}=-\mathrm{x}_{1}+2 \mathrm{x}_{1}^{2} \mathrm{x}_{2}$
$\dot{\mathrm{x}}_{2}=-\mathrm{x}_{2}$
by using the variable gradient method.
7. The following equation is called the Van der Pol equation.
$\ddot{x}-(1-x) \dot{x}+x=0$
Determine the type of the singular point and Draw a phase - plane portrait.
8. (a) Explain the multivalued responses and jump phenomenon
(b) Determine the describing function for the nonlinear element described by $\mathrm{y}=x^{3}$
where $\mathrm{x}=$ input to the nonlinear element (sinusoidal signal) and $\mathrm{y}=$ output of the nonlinear element.

IV B.Tech I Semester Examinations,November 2010
ADVANCED CONTROL SYSTEMS
Electrical And Electronics Engineering
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Check the stability of the system described by

$$
\begin{align*}
& \dot{\mathrm{x}}_{1}=-\mathrm{x}_{1}+2 \mathrm{x}_{1}^{2} \mathrm{x}_{2} \\
& \dot{\mathrm{x}}_{2}=-\mathrm{x}_{2} \tag{16}
\end{align*}
$$

by using the variable gradient method.
2. (a) Explain the multivalued responses and jump phenomenon
(b) Determine the describing function for the nonlinear element described by $\mathrm{y}=x^{3}$
where $\mathrm{x}=$ input to the nonlinear element (sinusoidal signal) and $\mathrm{y}=$ output of the nonlinear element.
3. (a) Explain Minimum - Time problem
(b) Explain State Regulator problem in brief?
4. (a) A single-input system is described by the following state equation.
$\dot{X}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right.$
$\left[\begin{array}{rr}0 & 0 \\ -2 & 0 \\ 1 & -3\end{array}\right] x+\left[\begin{array}{c}10 \\ 1 \\ 0\end{array}\right] u$

Design a state féedback controller which will give closed-loop poles at $1 \pm j 2,-6$.
(b) Draw the block diagram and deduce the expression for transfer function for the controller-observer.
5. (a) Find U^{*} for the system $\dot{x}=-\mathrm{x}+\mathrm{ux}(0)=1$ which minimizes
$J=\frac{1}{2} \int_{0}^{2}\left(x^{2}+u^{2}\right) d t$
(b) What is a Hamiltonian. Formulate the optimal control problem in terms of Hamiltonian.
6. The following equation is called the Van der Pol equation.
$\ddot{x}-(1-x) \dot{x}+x=0$
Determine the type of the singular point and Draw a phase - plane portrait.
7. (a) Consider a linear system described by the differential equation $\stackrel{\circ 0}{\mathrm{y}}+2 \stackrel{\circ}{\mathrm{y}}+\mathrm{y}=$ $\stackrel{\circ}{\mathrm{u}}+u$ Test for controllability and observability.
(b) Define and explain the concept of controllability.
8. Obtain the Hamilton- Jacobi equation for the system
$\mathrm{X}_{1}=\mathrm{X}_{2}$
$\mathrm{X}_{2}=2 \mathrm{X}_{1}+4$
$\mathrm{J}=\mathrm{X}(0)=0$
To minimize
$\mathrm{J}=1 / 2 \mathrm{X}^{2}\left(\mathrm{t}_{1}\right) \int_{0}^{t_{1}} 1 / 2\left(x_{1}^{2}+x_{2}^{2}+u^{2}\right) d t$
Final t_{1} is specified. $\mathrm{U}(\mathrm{t})$ and $\mathrm{X}(\mathrm{t})$ are not constrained.

IV B.Tech I Semester Examinations,November 2010 ADVANCED CONTROL SYSTEMS
Electrical And Electronics Engineering
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. The following equation is called the Van der Pol equation.
$\ddot{x}-(1-x) \dot{x}+x=0$
Determine the type of the singular point and Draw a phase - plane portrait.
2. (a) Find U^{*} for the system $\dot{x}=-\mathrm{x}+\mathrm{ux}(0)=1$ which minimizes

$$
J=\frac{1}{2} \int_{0}^{2}\left(x^{2}+u^{2}\right) d t
$$

(b) What is a Hamiltonian. Formulate the optimal control problem in terms of Hamiltonian.
3. (a) Consider a linear system described by the differential equation $\stackrel{\circ 0}{\mathrm{y}}+2 \stackrel{\circ}{\mathrm{y}}+\mathrm{y}=$ $\stackrel{\circ}{\mathrm{u}}+u$ Test for controllability and observability.
(b) Define and explain the concept of controllability.
4. Check the stability of the system described by

by using the variable gradient method.
5. (a) Explain Minimum - Time problem?
(b) Explain State Regulator problem in brief?
6. Obtain the Hamilton- Jacobi equation for the system
$\mathrm{X}_{1}=\mathrm{X}_{2}$
$\mathrm{X}_{2}=2 \mathrm{X}_{1}+4$
$\mathrm{J}=\mathrm{X}(0)=0$
To minimize
$\mathrm{J}=1 / 2 \mathrm{X}^{2}\left(\mathrm{t}_{1}\right) \int_{0}^{t_{1}} 1 / 2\left(x_{1}^{2}+x_{2}^{2}+u^{2}\right) d t$
Final t_{1} is specified. $\mathrm{U}(\mathrm{t})$ and $\mathrm{X}(\mathrm{t})$ are not constrained.
7. (a) A single-input system is described by the following state equation.

$$
\dot{X}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
1 & -2 & 0 \\
0 & 1 & -3
\end{array}\right] x+\left[\begin{array}{c}
10 \\
1 \\
0
\end{array}\right] u
$$

Design a state feedback controller which will give closed-loop poles at $1 \pm \mathrm{j} 2,-6$.
(b) Draw the block diagram and deduce the expression for transfer function for the controller-observer.
8. (a) Explain the multivalued responses and jump phenomenon
(b) Determine the describing function for the nonlinear element described by $\mathrm{y}=x^{3}$
where $\mathrm{x}=$ input to the nonlinear element (sinusoidal signal) and $\mathrm{y}=$ output of the nonlinear element.

IV B.Tech I Semester Examinations,November 2010 ADVANCED CONTROL SYSTEMS
Electrical And Electronics Engineering
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Obtain the Hamilton- Jacobi equation for the system
$\mathrm{X}_{1}=\mathrm{X}_{2}$
$\mathrm{X}_{2}=2 \mathrm{X}_{1}+4$
$\mathrm{J}=\mathrm{X}(0)=0$
To minimize
$\mathrm{J}=1 / 2 \mathrm{X}^{2}\left(\mathrm{t}_{1}\right) \int_{0}^{t_{1}} 1 / 2\left(x_{1}^{2}+x_{2}^{2}+u^{2}\right) d t$
Final t_{1} is specified. $\mathrm{U}(\mathrm{t})$ and $\mathrm{X}(\mathrm{t})$ are not constrained.
2. (a) Explain the multivalued responses and jump phenomenon
(b) Determine the describing function for the nonlinear element described by $\mathrm{y}=x^{3}$
where $\mathrm{x}=$ input to the nonlinear element (sinusoidal signal) and $\mathrm{y}=$ output of the nonlinear elennent.
3. The following equation is called the Van der Pol equation.
$\ddot{x}-(1-x) \dot{x}+x=0$
Determine the type of the singular point and Draw a phase - plane portrait.
4. (a) Explain Minimum - Time problem?
(b) Explain State Regulator problem in brief?
5. (a) Consider a linear system described by the differential equation $\stackrel{\circ}{\mathrm{y}}+2 \stackrel{\circ}{\mathrm{y}}+\mathrm{y}=$ $\stackrel{\circ}{\mathrm{u}}+u$ Test for controllability and observability.
(b) Define and explain the concept of controllability.
6. Check the stability of the system described by
$\dot{x}_{1}=-\mathrm{x}_{1}+2 \mathrm{x}_{1}^{2} \mathrm{x}_{2}$
$\dot{\mathrm{x}}_{2}=-\mathrm{x}_{2}$
by using the variable gradient method.
7. (a) A single-input system is described by the following state equation.
$\dot{X}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -3\end{array}\right] x+\left[\begin{array}{c}10 \\ 1 \\ 0\end{array}\right] u$

Design a state feedback controller which will give closed-loop poles at $1 \pm \mathrm{j} 2,-6$.
(b) Draw the block diagram and deduce the expression for transfer function for the controller-observer.
8. (a) Find U^{*} for the system $\dot{x}=-\mathrm{x}+\mathrm{ux}(0)=1$ which minimizes

$$
J=\frac{1}{2} \int_{0}^{2}\left(x^{2}+u^{2}\right) d t
$$

(b) What is a Hamiltonian. Formulate the optimal control problem in terms of Hamiltonian.

