\mathbf{RR}

Set No. 2

Max Marks: 80

[8+8]

[8+8]

IV B.Tech I Semester Examinations, November 2010 ADVANCED CONTROL SYSTEMS Electrical And Electronics Engineering

Time: 3 hours

Code No: RR410205

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Explain Minimum Time problem?
 - (b) Explain State Regulator problem in brief?
- 2. (a) Consider a linear system described by the differential equation $\ddot{y} + 2\ddot{y} + y = \ddot{u} + u$ Test for controllability and observability.
 - (b) Define and explain the concept of controllability
- 3. (a) Find U* for the system $\dot{x} = -x + u x$ (0) = 1 which minimizes $J = \frac{1}{2} \int_{0}^{2} (x^{2} + u^{2}) dt$
 - (b) What is a Hamiltonian. Formulate the optimal control problem in terms of Hamiltonian. [8+8]
- 4. (a) A single-input system is described by the following state equation.

 $\mathbf{X} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -3 \end{bmatrix} x + \begin{bmatrix} 10 \\ 1 \\ 0 \end{bmatrix} u$

Design a state feedback controller which will give closed-loop poles at $1 \pm j2, -6$.

- (b) Draw the block diagram and deduce the expression for transfer function for the controller-observer. [8+8]
- 5. Obtain the Hamilton- Jacobi equation for the system

$$X_{1} = X_{2}$$

$$X_{2} = 2X_{1} + 4$$

$$J = X(0) = 0$$
To minimize
$$J = 1/2X^{2}(t_{1})\int_{0}^{t_{1}} 1/2(x_{1}^{2} + x_{2}^{2} + u^{2})dt$$
Final t_{1} is specified . U(t) and X (t) are not constrained. [16]

6. Check the stability of the system described by

Code No: RR410205

RR

Set No. 2

- 7. The following equation is called the Van der Pol equation.
 \$\vec{x} (1 x)\vec{x} + x = 0\$
 Determine the type of the singular point and Draw a phase plane portrait. [16]
- 8. (a) Explain the multivalued responses and jump phenomenon
 - (b) Determine the describing function for the nonlinear element described by $y = x^3$

where x = input to the nonlinear element (sinusoidal signal) and y = output of the nonlinear element. [8+8]

RANK * * * * *

 \mathbf{RR}

Set No. 4

[16]

IV B.Tech I Semester Examinations,November 2010 ADVANCED CONTROL SYSTEMS Electrical And Electronics Engineering urs Max Marks: 80

Time: 3 hours

Code No: RR410205

Answer any FIVE Questions All Questions carry equal marks ****

1. Check the stability of the system described by $x_1 = -x_1 + 2x_1^2x_2$ $x_2 = -x_2$ by using the variable gradient method.

2. (a) Explain the multivalued responses and jump phenomenon

- (b) Determine the describing function for the nonlinear element described by $y = x^3$ where x = input to the nonlinear element (sinusoidal signal) and y = output of the nonlinear element. [8+8]
- 3. (a) Explain Minimum Time problem?
 - (b) Explain State Regulator problem in brief? [8+8]
- 4. (a) A single-input system is described by the following state equation.

 $\overset{\bullet}{X} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -3 \end{bmatrix} x + \begin{bmatrix} 10 \\ 1 \\ 0 \end{bmatrix} u$

Design a state feedback controller which will give closed-loop poles at $1 \pm j2, -6$.

- (b) Draw the block diagram and deduce the expression for transfer function for the controller-observer. [8+8]
- 5. (a) Find U* for the system $\dot{x} = -x + u x$ (0) = 1 which minimizes $J = \frac{1}{2} \int_{0}^{2} (x^{2} + u^{2}) dt$
 - (b) What is a Hamiltonian. Formulate the optimal control problem in terms of Hamiltonian. [8+8]
- 6. The following equation is called the Van der Pol equation.
 \$\vec{x} (1 x)\vec{x} + x = 0\$
 Determine the type of the singular point and Draw a phase plane portrait. [16]
- 7. (a) Consider a linear system described by the differential equation $\overset{\circ\circ}{y} + 2\overset{\circ}{y} + y = \overset{\circ}{u} + u$ Test for controllability and observability.

Set No. 4 RR Code No: RR410205

(b) Define and explain the concept of controllability. [8+8]

8. Obtain the Hamilton- Jacobi equation for the system $X_1 = X_2$ $X_2 = 2X_1 + 4$ J = X(0) = 0To minimize $J = 1/2X^{2}(t_{1})\int_{0}^{t_{1}} 1/2(x_{1}^{2} + x_{2}^{2} + u^{2})dt$

Final t_1 is specified. U(t) and X (t) are not constrained.

FRANKER

[16]

 \mathbf{RR}

Set No. 1

[16]

[16]

IV B.Tech I Semester Examinations,November 2010 ADVANCED CONTROL SYSTEMS Electrical And Electronics Engineering ars Max Marks: 80

Time: 3 hours

Code No: RR410205

Answer any FIVE Questions All Questions carry equal marks ****

1. The following equation is called the Van der Pol equation. $\ddot{x} - (1 - x)\dot{x} + x = 0$ Determine the type of the singular point and Draw a phase - plane portrait. [16]

2. (a) Find U* for the system $\dot{x} = -x + u x$ (0) = 1 which minimizes

$$J = \frac{1}{2} \int_{0}^{2} (x^{2} + u^{2}) dt$$

- (b) What is a Hamiltonian. Formulate the optimal control problem in terms of Hamiltonian. [8+8]
- 3. (a) Consider a linear system described by the differential equation $\overset{\circ\circ}{y} + 2\overset{\circ}{y} + y = \overset{\circ}{u} + u$ Test for controllability and observability.
 - (b) Define and explain the concept of controllability. [8+8]
- 4. Check the stability of the system described by $\label{eq:x1} \mathbf{x}_1 \,=\, -\mathbf{x}_1 + 2\mathbf{x}_1^2\mathbf{x}_2$

 $\mathbf{x}_2 = -\mathbf{x}_2$

by using the variable gradient method.

- 5. (a) Explain Minimum Time problem?
 - (b) Explain State Regulator problem in brief? [8+8]
- 6. Obtain the Hamilton- Jacobi equation for the system

$$X_{1} = X_{2}$$

$$X_{2} = 2X_{1} + 4$$

$$J = X(0) = 0$$

To minimize

$$J = 1/2X^{2}(t_{1})\int_{0}^{t_{1}} 1/2(x_{1}^{2} + x_{2}^{2} + u^{2})dt$$

Final t_1 is specified. U(t) and X (t) are not constrained.

7. (a) A single-input system is described by the following state equation.

$$\overset{\bullet}{X} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -3 \end{bmatrix} x + \begin{bmatrix} 10 \\ 1 \\ 0 \end{bmatrix} u$$

Design a state feedback controller which will give closed-loop poles at $1 \pm j2, -6$.

Code No: RR410205

RR

- (b) Draw the block diagram and deduce the expression for transfer function for the controller-observer. \$[8+8]\$
- 8. (a) Explain the multivalued responses and jump phenomenon
 - (b) Determine the describing function for the nonlinear element described by $\mathbf{y} = x^3$

where x = input to the nonlinear element (sinusoidal signal) and y = output of the nonlinear element. [8+8]

FRANKER ****

 \mathbf{RR}

Set No. 3

Fr

IV B.Tech I Semester Examinations,November 2010 ADVANCED CONTROL SYSTEMS Electrical And Electronics Engineering mrs Max Marks: 80

Time: 3 hours

Code No: RR410205

Answer any FIVE Questions All Questions carry equal marks *****

1. Obtain the Hamilton- Jacobi equation for the system $X_1 = X_2$ $X_2 = 2X_1 + 4$ J = X(0) = 0To minimize $J = 1/2X^2(t_1) \int_{0}^{t_1} 1/2(x_1^2 + x_2^2 + u^2) dt$

Final t_1 is specified. U(t) and X (t) are not constrained.

[16]

[16]

- 2. (a) Explain the multivalued responses and jump phenomenon
 - (b) Determine the describing function for the nonlinear element described by $y = x^3$

where x = input to the nonlinear element (sinusoidal signal) and y = output of the nonlinear element. [8+8]

- 4. (a) Explain Minimum Time problem?
 - (b) Explain State Regulator problem in brief? [8+8]
- 5. (a) Consider a linear system described by the differential equation $\overset{\circ\circ}{y} + 2\overset{\circ}{y} + y = \overset{\circ}{u} + u$ Test for controllability and observability.
 - (b) Define and explain the concept of controllability. [8+8]
- 6. Check the stability of the system described by

$$\mathbf{x}_1 = -\mathbf{x}_1 + 2\mathbf{x}_1^2\mathbf{x}_2$$

$$\mathbf{x}_2 = -\mathbf{x}_2$$

by using the variable gradient method.

7. (a) A single-input system is described by the following state equation.

$$\overset{\bullet}{X} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -3 \end{bmatrix} x + \begin{bmatrix} 10 \\ 1 \\ 0 \end{bmatrix} u$$

Design a state feedback controller which will give closed-loop poles at $1 \pm j2, -6$.

(b) Draw the block diagram and deduce the expression for transfer function for the controller-observer. [8+8]

RR Set No. 3

Code No: RR410205

- 8. (a) Find U* for the system $\dot{x} = -x + u x$ (0) = 1 which minimizes $J = \frac{1}{2} \int_{0}^{2} (x^{2} + u^{2}) dt$
 - (b) What is a Hamiltonian. Formulate the optimal control problem in terms of Hamiltonian. [8+8]

