\mathbf{RR}

[9+7]

|8+8|

IV B.Tech I Semester Examinations, November 2010 HIGH VOLTAGE ENGINEERING Electrical And Electronics Engineering

Time: 3 hours

Code No: RR410209

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Explain how the breakdown of gases occur in non-uniform fields.
 - (b) What is Arc discharge? Explain.
- 2. Discuss various methods of measuring high d.c and a.c. currents. [16]
- 3. (a) How are damped high frequency oscillations obtained from a Tesla coil?
 - (b) Explain clearly cascaded voltage multiplier circuits for high voltage generation.
- 4. (a) Write a short note on the use of an Oscilloscope as a Partial Discharge measuring device.
 - (b) A Schering bridge was used to measure the capacitance and loss angle of a h. v. bushing. At balance, the observations were: the value of the standard condenser = 100 pF, R_3 =3180 Ω , C_3 =0.00125 μF and R_4 = 636 Ω . What are the values of capacitance and tan δ of the bushing? [6+10]
- 5. (a) What do you understand by "intrinsic strength" of a solid dielectric? How does breakdown occur due to electrons in a solid dielectric?
 - (b) What are the special features of epoxy resin insulation? [8+8]
- 6. (a) Give the Marx circuit arrangement for multi stage impulse generators.
 - (b) An impulse current generator is rated for 50kW sec. The parameters of the circuit are $C = 51 \ \mu F$ and $L = 2 \ \mu H$. Find the time to front, time to tail of the current wave form. [8+8]
- 7. What is Ragowskii Coil? Explain with a neat diagram, its principle of operation for measurement of high impulse currents. [16]
- 8. (a) Discuss about various aspects of collision Cross Section.
 - (b) Derive the relationship between mean free path, gas pressure and temperature. $[8{+}8]$

 \mathbf{RR}

IV B.Tech I Semester Examinations,November 2010 HIGH VOLTAGE ENGINEERING Electrical And Electronics Engineering urs Max Marks: 80

Time: 3 hours

Code No: RR410209

Answer any FIVE Questions All Questions carry equal marks

1. (a) Write a short note on the use of an Oscilloscope as a Partial Discharge measuring device.

- (b) A Schering bridge was used to measure the capacitance and loss angle of a h. v. bushing. At balance, the observations were: the value of the standard condenser = 100 pF, R_3 =3180 Ω , C_3 =0.00125 μF and R_4 = 636 Ω . What are the values of capacitance and tan δ of the bushing? [6+10]
- 2. (a) What do you understand by "intrinsic strength" of a solid dielectric? How does breakdown occur due to electrons in a solid dielectric?
 - (b) What are the special features of epoxy resin insulation? [8+8]
- 3. (a) Explain how the breakdown of gases occur in non-uniform fields.
 - (b) What is Arc discharge? Explain. [9+7]
- 4. (a) Discuss about various aspects of collision Cross Section.
 - (b) Derive the relationship between mean free path, gas pressure and temperature. [8+8]
- 5. (a) How are damped high frequency oscillations obtained from a Tesla coil?
 - (b) Explain clearly cascaded voltage multiplier circuits for high voltage generation. [8+8]
- 6. Discuss various methods of measuring high d.c and a.c. currents. [16]
- 7. What is Ragowskii Coil? Explain with a neat diagram, its principle of operation for measurement of high impulse currents. [16]
- 8. (a) Give the Marx circuit arrangement for multi stage impulse generators.
 - (b) An impulse current generator is rated for 50kW sec. The parameters of the circuit are $C = 51 \ \mu F$ and $L = 2 \ \mu H$. Find the time to front, time to tail of the current wave form. [8+8]

 \mathbf{RR}

IV B.Tech I Semester Examinations,November 2010 HIGH VOLTAGE ENGINEERING Electrical And Electronics Engineering

Time: 3 hours

Code No: RR410209

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. What is Ragowskii Coil? Explain with a neat diagram, its principle of operation for measurement of high impulse currents. [16]
- 2. (a) How are damped high frequency oscillations obtained from a Tesla coil?
 - (b) Explain clearly cascaded voltage multiplier circuits for high voltage generation. [8+8]
- 3. Discuss various methods of measuring high d.c and a.c. currents. [16]
- 4. (a) Discuss about various aspects of collision Cross Section.
 - (b) Derive the relationship between mean free path, gas pressure and temperature. [8+8]
- 5. (a) Write a short note on the use of an Oscilloscope as a Partial Discharge measuring device.
 - (b) A Schering bridge was used to measure the capacitance and loss angle of a h. v. bushing. At balance, the observations were: the value of the standard condenser = 100 pF, R_3 =3180 Ω , C_3 =0.00125 μF and R_4 = 636 Ω . What are the values of capacitance and tan δ of the bushing? [6+10]
- 6. (a) Explain how the breakdown of gases occur in non-uniform fields.
 - (b) What is Arc discharge? Explain. [9+7]
- 7. (a) Give the Marx circuit arrangement for multi stage impulse generators.
 - (b) An impulse current generator is rated for 50kW sec. The parameters of the circuit are $C = 51 \ \mu F$ and $L = 2 \ \mu H$. Find the time to front, time to tail of the current wave form. [8+8]
- 8. (a) What do you understand by "intrinsic strength" of a solid dielectric? How does breakdown occur due to electrons in a solid dielectric?
 - (b) What are the special features of epoxy resin insulation? [8+8]

 \mathbf{RR}

IV B.Tech I Semester Examinations, November 2010 HIGH VOLTAGE ENGINEERING Electrical And Electronics Engineering

Time: 3 hours

Code No: RR410209

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Write a short note on the use of an Oscilloscope as a Partial Discharge measuring device.
 - (b) A Schering bridge was used to measure the capacitance and loss angle of a h. v. bushing. At balance, the observations were: the value of the standard condenser = 100 pF, R_3 =3180 Ω , C_3 =0.00125 μF and R_4 = 636 Ω . What are the values of capacitance and tan δ of the bushing? [6+10]
- 2. What is Ragowskii Coil? Explain with a neat diagram, its principle of operation for measurement of high impulse currents. [16]
- 3. (a) Explain how the breakdown of gases occur in non-uniform fields.
 - (b) What is Arc discharge? Explain. [9+7]
- 4. (a) What do you understand by "intrinsic strength" of a solid dielectric? How does breakdown occur due to electrons in a solid dielectric?
 - (b) What are the special features of epoxy resin insulation? [8+8]
- 5. (a) Give the Marx circuit arrangement for multi stage impulse generators.
 - (b) An impulse current generator is rated for 50kW sec. The parameters of the circuit are $C = 51 \ \mu F$ and $L = 2 \ \mu H$. Find the time to front, time to tail of the current wave form. [8+8]
- 6. Discuss various methods of measuring high d.c and a.c. currents. [16]
- 7. (a) Discuss about various aspects of collision Cross Section.
 - (b) Derive the relationship between mean free path, gas pressure and temperature. [8+8]
- 8. (a) How are damped high frequency oscillations obtained from a Tesla coil?
 - (b) Explain clearly cascaded voltage multiplier circuits for high voltage generation. [8+8]
