IV B.Tech I Semester Examinations,NOVEMBER 2010 NEURAL NETWORKS AND APPLICATIONS
 Electrical And Electronics Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. The MAXNET with four output nodes, $\mathrm{P}=4$ receives the input vector. $\mathrm{Y}^{0}=\left[\begin{array}{llll}0.5 & 0.6 & 0.7 & 0.8\end{array}\right]^{t}$
(a) Find the \in values that would be required to suppress the output of the weakest node exactly to the zero values after the first cycle.
(b) Find subsequent responses of the network, y^{1} and $\hat{\mathrm{y}}^{2}$, for the computed value of \in.
2. What is gradient type Hopfield Network? Differentiate between Discrete time Hopfield Network and gradient type Hopfield network.
3. (a) What are the requirements of leanning laws.
(b) Distinguish between activation and synaptic dynamics models.
4. (a) Distinguish between Multi-layer Perceptron and Multi-layer feed forward neural network.
(b) What âre the ill-passed problems in the context of training a Multi-layer feed forward network.
5. What do you understand by finite resolution and conversion error. Explain the circuit producing a single digitally programmable weight employing a multiplying D/A converters (MDAC).
6. Discuss the classification of neural nets based on training, architecture and activation functions used.
7. Write and discuss about Single layer Discrete Perceptron Training Algorithm. [16]
8. Derive a numerical solution for finding the solution of differential equation. [16]

IV B.Tech I Semester Examinations,NOVEMBER 2010 NEURAL NETWORKS AND APPLICATIONS
 Electrical And Electronics Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. The MAXNET with four output nodes, $\mathrm{P}=4$ receives the input vector. $\mathrm{Y}^{0}=\left[\begin{array}{llll}0.5 & 0.6 & 0.7 & 0.8\end{array}\right]^{t}$
(a) Find the \in values that would be required to suppress the output of the weakest node exactly to the zero values after the first cycle.
(b) Find subsequent responses of the network, y^{1} and $\hat{\mathrm{y}}^{2}$, for the computed value of \in.
2. What is gradient type Hopfield Network? Differentiate between Discrete time Hopfield Network and gradient type Hopfield network.
3. What do you understand by finite resolution and conversion error. Explain the circuit producing a single digitally programmable weight employing a multiplying D/A converters (MDAC)
4. Derive a numerical solution for finding the solution of differential equation.
5. Discuss the classification of neural nets based on training, architecture and activation functions used.
6. Write and discuss about Single layer Discrete Perceptron Training Algorithm. [16]
7. (a) What are the requirements of learning laws.
(b) Distinguish between activation and synaptic dynamics models.
8. (a) Distinguish between Multi-layer Perceptron and Multi-layer feed forward neural network.
(b) What are the ill-possed problems in the context of training a Multi-layer feed forward network.

IV B.Tech I Semester Examinations,NOVEMBER 2010 NEURAL NETWORKS AND APPLICATIONS
 Electrical And Electronics Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Discuss the classification of neural nets based on training, architecture and activation functions used.
2. What is gradient type Hopfield Network? Differentiate between Discrete time Hopfield Network and gradient type Hopfield network.
3. (a) What are the requirements of learning laws.
(b) Distinguish between activation and synaptic dynamics models.
4. Write and discuss about Single layer Discrete Perceptron Training Algorithm. [16]
5. What do you understand by finite resolution and conversion error. Explain the circuit producing a single digitally programmable weight employing a multiplying D/A converters (MDAC).
6. (a) Distinguish between Multi-layer Perceptron and Multi-layer feed forward neural network.
(b) What are the ill-possed problems in the context of training a Multi-layer feed forward network.
7. Derive a numerical solution for finding the solution of differential equation.
8. The MAXNET with four output nodes, $\mathrm{P}=4$ receives the input vector. $Y^{0}=\left[\begin{array}{llll}0.5 & 0.6 & 0.7 & 0.8\end{array}\right]^{t}$
(a) Find the \in values that would be required to suppress the output of the weakest node exactly to the zero values after the first cycle.
(b) Find subsequent responses of the network, y^{1} and y^{2}, for the computed value of \in.

IV B.Tech I Semester Examinations,NOVEMBER 2010 NEURAL NETWORKS AND APPLICATIONS
 Electrical And Electronics Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. What is gradient type Hopfield Network? Differentiate between Discrete time Hopfield Network and gradient type Hopfield network.
2. Write and discuss about Single layer Discrete Perceptron Training Algorithm. [16]
3. What do you understand by finite resolution and conversion error. Explain the circuit producing a single digitally programmable weight employing a multiplying D/A converters (MDAC).
4. (a) What are the requirements of learning laws.
(b) Distinguish between activation and synaptic dynamics models.
5. Discuss the classification of neural nets based on training, architecture and activation functions used.
6. (a) Distinguish between Multi-layer Perceptron and Multi-layer feed forward neural network.
(b) What are the ill-possed problems in the context of training a Multi-layer feed forward network.
7. The MAXNET with four output nodes, $\mathrm{P}=4$ receives the input vector. $\mathrm{Y}^{0}=\left[\begin{array}{llll}0.5 & 0.6 & 0.7 & 0.8\end{array}\right]^{t}$
(a) Find the \in values that would be required to suppress the output of the weakest node exactly to the zero values after the first cycle.
(b) Find subsequent responses of the network, y^{1} and y^{2}, for the computed value of \in.
8. Derive a numerical solution for finding the solution of differential equation.
[16]
