\mathbf{RR}

Set No. 2

IV B.Tech I Semester Examinations, NOVEMBER 2010 BIO CHEMICAL ENGINEERING Chemical Engineering

Time: 3 hours

Code No: RR410807

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Explain the following continuous sterilizer designs with a schematic diagram:
 - i. Direct heating using steam injection
 - ii. Indirect heating using plate heat exchangers.
 - (b) Discuss the several advantages of continuous sterilization and also mention its drawbacks. [5+5+6]
- 2. (a) What are spirilla, cocci and bacilli? Draw a neat diagram to represent them.
 - (b) What are procaryotes? Describe their general characteristics with a neat sketch.
 - (c) What is the difference between mitochondria and chloroplast? [6+6+4]
- 3. (a) Competitive, noncompetitive and mixed inhibitions can be easily distinguished in a Lineweaver-Burk plot. Explain how this can be done with the help of neat figures. What is the effect on v_{max} and K_m values for these types of inhibitions?
 - (b) Explain in detail allosteric control and substrate analogs. [8+8]
- (a) List the factors motivating the development of new types of bioreactors. 4.
 - (b) Give a brief account of alternate bioreactor configuration. [8+8]
- 5. Discuss in detail about the different means of transport across cell membranes.[16]
- 6. (a) Eadie (1942) measured the initial reaction rate of hydrolysis of acetyl-choline (substrate) by dog serum (source of enzyme) and obtained the following data:

Substrate concentration	Initial reaction rate
$\mathrm{mmol/L}$	$\rm mmol/L min$
0.0032	0.111
0.0049	0.148
0.0062	0.143
0.0080	0.166
0.0095	0.200

Evaluate the Michealis-Menten kinetic parameters by employing the Lineweaver-Burk plot.

Code No: RR410807

RR

Set No. 2

- (b) Briefly discuss the other two methods for estimating the Michealis-Menten parameters. [12+4]
- Briefly describe the industrial process employing immobilized enzyme catalyst for the production of L-amino acids by resolution of racemic amino acid mixtures with a neat flow diagram. Give the reaction involved. [16]
- 8. With the help of typical growth curve, discuss in detail growth cycle phases for batch cultivation and suggest ways of reducing lag times. [16]

RR

Set No. 4

IV B.Tech I Semester Examinations, NOVEMBER 2010 BIO CHEMICAL ENGINEERING Chemical Engineering

Time: 3 hours

Code No: RR410807

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Briefly describe the industrial process employing immobilized enzyme catalyst for the production of L-amino acids by resolution of racemic amino acid mixtures with a neat flow diagram. Give the reaction involved. [16]
- 2. With the help of typical growth curve, discuss in detail growth cycle phases for batch cultivation and suggest ways of reducing lag times. [16]
- 3. (a) Competitive, noncompetitive and mixed inhibitions can be easily distinguished in a Lineweaver-Burk plot. Explain how this can be done with the help of neat figures. What is the effect on v_{max} and K_m values for these types of inhibitions?
 - (b) Explain in detail allosteric control and substrate analogs. [8+8]
- 4. (a) What are spirilla, cocci and bacilli? Draw a neat diagram to represent them.
 - (b) What are procaryotes? Describe their general characteristics with a neat sketch.
 - (c) What is the difference between mitochondria and chloroplast? [6+6+4]
- (a) List the factors motivating the development of new types of bioreactors. 5.
 - (b) Give a brief account of alternate bioreactor configuration. [8+8]
- 6. (a) Eadie (1942) measured the initial reaction rate of hydrolysis of acetyl-choline (substrate) by dog serum (source of enzyme) and obtained the following data:

Substrate concentration	Initial reaction rate
$\mathrm{mmol/L}$	$\mathrm{mmol/L} \mathrm{min}$
0.0032	0.111
0.0049	0.148
0.0062	0.143
0.0080	0.166
0.0095	0.200

Evaluate the Michealis-Menten kinetic parameters by employing the Lineweaver-Burk plot.

(b) Briefly discuss the other two methods for estimating the Michealis-Menten parameters. [12+4]

Code No: RR410807

$\mathbf{R}\mathbf{R}$

Set No. 4

- 7. (a) Explain the following continuous sterilizer designs with a schematic diagram:
 - i. Direct heating using steam injection
 - ii. Indirect heating using plate heat exchangers.
 - (b) Discuss the several advantages of continuous sterilization and also mention its drawbacks. [5+5+6]
- 8. Discuss in detail about the different means of transport across cell membranes.[16]

KRANK ****

RR

Set No. 1

IV B.Tech I Semester Examinations, NOVEMBER 2010 BIO CHEMICAL ENGINEERING Chemical Engineering

Time: 3 hours

Code No: RR410807

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Briefly describe the industrial process employing immobilized enzyme catalyst for the production of L-amino acids by resolution of racemic amino acid mixtures with a neat flow diagram. Give the reaction involved. [16]
- 2. (a) What are spirilla, cocci and bacilli? Draw a neat diagram to represent them.
 - (b) What are procaryotes? Describe their general characteristics with a neat sketch.
 - (c) What is the difference between mitochondria and chloroplast? [6+6+4]
- 3. With the help of typical growth curve, discuss in detail growth cycle phases for batch cultivation and suggest ways of reducing lag times. [16]
- 4. (a) Eadie (1942) measured the initial reaction rate of hydrolysis of acetyl-choline (substrate) by dog serum (source of enzyme) and obtained the following data:

Substrate concentration	Initial reaction rate
mmol/L	mmol/L min
0.0032	0.111
0.0049	0.148
0.0062	0.143
0.0080	0.166
0.0095	0.200

Evaluate the Michealis-Menten kinetic parameters by employing the Lineweaver-Burk plot.

- (b) Briefly discuss the other two methods for estimating the Michealis-Menten parameters. [12+4]
- 5. (a) Explain the following continuous sterilizer designs with a schematic diagram:
 - i. Direct heating using steam injection
 - ii. Indirect heating using plate heat exchangers.
 - (b) Discuss the several advantages of continuous sterilization and also mention its drawbacks. [5+5+6]
- (a) List the factors motivating the development of new types of bioreactors. 6.

Code No: RR410807 RR Set No. 1

- (b) Give a brief account of alternate bioreactor configuration. [8+8]
- 7. Discuss in detail about the different means of transport across cell membranes.[16]
- 8. (a) Competitive, noncompetitive and mixed inhibitions can be easily distinguished in a Lineweaver-Burk plot. Explain how this can be done with the help of neat figures. What is the effect on v_{max} and K_m values for these types of inhibitions?
 - (b) Explain in detail allosteric control and substrate analogs. [8+8]

RR

Set No. 3

IV B.Tech I Semester Examinations, NOVEMBER 2010 BIO CHEMICAL ENGINEERING Chemical Engineering

Time: 3 hours

Code No: RR410807

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) What are spirilla, cocci and bacilli? Draw a neat diagram to represent them.
 - (b) What are procaryotes? Describe their general characteristics with a neat sketch.
 - (c) What is the difference between mitochondria and chloroplast? [6+6+4]
- 2. (a) List the factors motivating the development of new types of bioreactors.
 - (b) Give a brief account of alternate bioreactor configuration. [8+8]
- 3. (a) Competitive, noncompetitive and mixed inhibitions can be easily distinguished in a Lineweaver-Burk plot. Explain how this can be done with the help of neat figures. What is the effect on v_{max} and K_m values for these types of inhibitions?
 - (b) Explain in detail allosteric control and substrate analogs. [8+8]
- 4. Discuss in detail about the different means of transport across cell membranes.[16]
- 5. (a) Eadie (1942) measured the initial reaction rate of hydrolysis of acetyl-choline (substrate) by dog serum (source of enzyme) and obtained the following data:

Substrate concentration	Initial reaction rate
mmol/L	mmol/L min
0.0032	0.111
0.0049	0.148
0.0062	0.143
0.0080	0.166
0.0095	0.200

Evaluate the Michealis-Menten kinetic parameters by employing the Lineweaver-Burk plot.

- (b) Briefly discuss the other two methods for estimating the Michealis-Menten [12+4]parameters.
- 6. With the help of typical growth curve, discuss in detail growth cycle phases for batch cultivation and suggest ways of reducing lag times. [16]

Code No: RR410807

RR

Set No. 3

- Briefly describe the industrial process employing immobilized enzyme catalyst for the production of L-amino acids by resolution of racemic amino acid mixtures with a neat flow diagram. Give the reaction involved. [16]
- 8. (a) Explain the following continuous sterilizer designs with a schematic diagram:
 - i. Direct heating using steam injection
 - ii. Indirect heating using plate heat exchangers.
 - (b) Discuss the several advantages of continuous sterilization and also mention its drawbacks. [5+5+6]

RANK RSI