

Code No: RT21024 (R13) (SET - 1)

II B. Tech I Semester Supplementary Examinations, Oct/Nov - 2017 COMPLEX VARIABLES AND STATISTICAL METHODS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answer **ALL** the question in **Part-A**

3. Answer any **THREE** Questions from **Part-B**

PART -A

- 1. a) If f(z) = u(x,y)+iv(x,y) is analystic, then prove that u and v satisfies Laplace (4M) equation
 - b) Evaluate $\int_{(0,0)}^{(1,1)} [3x^2 + 5y + i(x^2 y^2)] dz \ along \ y^2 = x$ (4M)
 - c) Determine the residue of $z/\cos z$ at z=0 (3M)
 - d) Find the Image of straight line x = c under the transformation w = 4/z (4M)
 - e) If X is normally distributed with mean 30 and S.D. 6 then find P(X > 17) (3M)
 - f) What is the sample size with 98% confidence that the maximum error is at most 0.25 with S.D is 1.25 (4M)

PART-B

- 2. a) If f(z) is regular then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f^1(z)|^2$ (8M)
 - b) Construct analytic function f(z), whose imaginary part is (8M) $v(x,y) = x^2 y^2 + \frac{x}{x^2 + y^2}$
- 3. a) Evaluate $\int_{c} \frac{\cos z dz}{(z-\pi)}$, C: being circle |z-1|=3 by Cauchy's Integral formula (8M)
 - Obtain Laurent's series expansion of $\frac{1}{(z^2 4z + 3)}$ for 1 < |z| < 3 (8M)
- 4. a) Evaluate $\int_{-\infty}^{\infty} \frac{\cos ax}{x^2 + 1} dx (a > 0)$ using residue theorem (8M)
 - b) Evaluate $\int_{0}^{-\infty} \frac{\sin^2 \theta}{a + b \cos \theta} d\theta$ using residue theorem (8M)
- 5. a) Discuss the transformation w = z+1/z (8M)
 - b) Find the Bilinear transformation that maps z(-i,0,i) onto w(-1,i,1) (8M)

1 of 2

Code No: RT21024

R13

SET - 1

- 6. From a population {3,6,9,15,17}, list of all possible samples of size 3 without (16M) replacement from the population hence calculate
 - i) Mean of each samples listed by assigning each sample with probability 1/10
 - ii) Verify $E(\bar{x}) = \theta$, where θ is the mean of the population
 - iii) Find variance of the population
 - iv) Find the variance of mean of the samples
- 7. a) The mean life of 100 bulbs is 1560hrs with S.D of 90 hrs. Test the claim at 5% (8M) level that the mean life time of bulbs is 1580hrs
 - b) Test whether the die was fair if it is thrown 120 times and observed the (8M) frequency as follows at 1% level

Face No	1	2	3	4	5	6
Frequency	10	15	25	25	18	27

MMM FirstRanker.com