

Code No: RT31043 (R13)

# III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2017 CONTROL SYSTEMS

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A** is compulsory

3. Answer any THREE Questions from Part-B

(Normal and semi & polar graph sheet are the supplied)

# PART –A

| 1 | a) | What is meant by open loop control system?           | [3M] |
|---|----|------------------------------------------------------|------|
|   | b) | Compare the AC and DC servomotor.                    | [4M] |
|   | c) | Explain about steady state error                     | [3M] |
|   | d) | What are limitations of Routh's stability criterion? | [4M] |
|   | e) | Define phase and gain crossover frequency            | [4M] |
|   | f) | Explain about obsevability                           | [4M] |
|   |    | PART-B                                               |      |

- 2 a) Derive the transfer function of translational mechanical systems. [8M]
  - b) Determine the transfer function  $\frac{V_3(s)}{F(s)}$ , for the system show in below figure: [8M]



3 a) Derive the transfer function and develop the block diagram of armature controlled [8M] DC servo motor.

1 of 2



b) Find the transfer function for control function shown below figure using [8M] Mason's gain formula



- 4 a) Derive the expressions for peak time and settling time of a standard second [8M] order under damped system.
  - b) Determine the step, ramp and parabolic error constants of the following unity [8M] feedback control system whose open loop transfer function is given by

$$G(s) = \frac{1000}{(1+2S)(1+0.5S)}$$

- 5 a) The characteristics equation for a certain feedback control system is given by [8M]  $S^4 + 22S^3 + 10S^2 + 2S + K = 0$ , Find K which corresponds to the stable system
  - b) Plot the root locus pattern of a system whose forward path transfer function is [8M]  $G(s) = \frac{K}{S(S+2)(S+3)}$
- 6 Sketch the Bode plot and determine the following [16M] gain cross over frequency phase cross over frequency gain margin phase margin for then transfer function is given  $G(s) = \frac{10(1+0.2S)}{S(S^2+8S+50)}$
- 7 a) Explain in detail about the electrical circuit diagram that represents the Lag [8M] Compensator.
  - b) Determine the state controllability and observability of the following system [8M]  $A = \begin{bmatrix} -1 & 0 \\ 0 & -4 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 3 \end{bmatrix}$

\*\*\*\*\*

r.com www.FirstRanker.com

Code No: RT31043

stranker's choice





# III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2017 CONTROL SYSTEMS

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

|               | )                                                                 |   |
|---------------|-------------------------------------------------------------------|---|
| Time: 3 hours | Max. Marks: 70                                                    | ) |
|               | Note: 1. Question Paper consists of two parts (Part-A and Part-B) |   |
|               | 2. Answering the question in <b>Part-A</b> is compulsory          |   |
|               | 3. Answer any <b>THREE</b> Questions from <b>Part-B</b>           |   |

(Normal and semi & polar graph sheet are the suppled)

#### PART -A

| f)               | Explain about controllability                                     | [3M]                                                                                                                                                                                                                                                                                                                                                     |
|------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e)               | What is polar plot? Draw the polar plot of $G(s)=1/(1+ST)$        | [4M]                                                                                                                                                                                                                                                                                                                                                     |
| d)               | What are effects of adding poles to $G(s) H(s)$ on the root loci? | [4M]                                                                                                                                                                                                                                                                                                                                                     |
| c)               | explain the unit impulse response of a first order system         | [4M]                                                                                                                                                                                                                                                                                                                                                     |
| b)               | What are the merits of block diagram representation of a system?  | [4M]                                                                                                                                                                                                                                                                                                                                                     |
| a)               | What are the features of Mathematical Model?                      | [3M]                                                                                                                                                                                                                                                                                                                                                     |
| a<br>b<br>c<br>d |                                                                   | <ul> <li>What are the features of Mathematical Model?</li> <li>What are the merits of block diagram representation of a system?</li> <li>explain the unit impulse response of a first order system</li> <li>What are effects of adding poles to G(s) H(s) on the root loci?</li> <li>What is poler plot? Draw the poler plot of G(s)=1/(1+ST)</li> </ul> |

#### PART -B

- 2 a) Explain the advantages and disadvantages of open loop and closed loop control [8M] systems with one example
  - b) Write the force equations of the linear translational system shown in figure. Draw [8M] the equivalent electrical network using force-voltage Analogy, with the help of necessary mathematical equations.



3 a) Derive the transfer function and develop the block diagram of a AC servo motor. [8M]



b) Find the closed loop transfer function of control system shown below figure:



4 a) Find the step, ramp and parabolic error coefficients and their corresponding [8M] steady-state errors for unity feedback system having the following transfer function  $\alpha(\alpha) = \frac{6(S+2)}{2}$ 

$$G(S) = \frac{O(S+2)}{S(S+3)(S^2+2S+5)}$$

b) Explain about the PID controller

[8M]

[8M]

- 5 a) The characteristics equation for a certain feedback control system is given by [8M]  $S^4 + 4S^3 + 7S^2 + 16S + 12 = 0$ , Test its stability and find the roots on imaginary axis.
  - b) Plot the root locus pattern of a system whose forward path transfer function is  $K(s \pm 1)$  [8M]

$$G(s) = \frac{K(s+1)}{S(S+2)(S^2+2S+5)}$$

- <sup>6</sup> a) Plot the Bode diagram for the following transfer function and obtain the gain and phase cross over frequencies.G(S) = 10/S(1+0.4S)(1+0.1S) [8M]
  - b) Sketch the polar plot for a given open loop function $G(S) = \frac{10}{S(S+1)(S+3)}$ . Also [8M] find gain margin and phase margin.
- 7 system is characterized by the following state space equations [16M]

Find the transfer function of the system. Compute the state transition matrix. Solve the state equation for the unit step input under zero initial conditions



Code No: RT31043

rstRan

stranker's choice





# III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2017 CONTROL SYSTEMS

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**)

2. Answering the question in Part-A is compulsory

3. Answer any **THREE** Questions from **Part-B** 

(Normal and semi & polar graph sheet are the supplied)

### PART -A

| l | a) | Write are the difference in between open-loop and closed-loop control systems. | [3M] |
|---|----|--------------------------------------------------------------------------------|------|
|   | b) | What are the advantages of transfer function of a system?                      | [4M] |
|   | c) | What are Standard test signals?                                                | [3M] |
|   | d) | What are asymptotes? How will you find the angle of asymptotes?                | [4M] |
|   | e) | What are the features of Polar plots?                                          | [4M] |
|   | f) | What does mean by state model?                                                 | [4M] |
|   |    | PART -B                                                                        |      |

| 2 | a) | Explain the characteristics of feedback. |  |
|---|----|------------------------------------------|--|
|   |    |                                          |  |

b) Determine the transfer function  $\frac{V_1(s)}{F(s)}$  for the system show in below figure: [8M]



3 a) Derive the transfer function of Synchro Pair.

b) Find the closed loop transfer function of control system shown below figure:

 $R \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow G_{4} \rightarrow G_{4} \rightarrow C_{4} \rightarrow$ 

1 of 2

# www.FirstRanker.com

[8M] [8M]

[8M]





- 4 a) A certain feedback system is described by the following transfer function [8M]  $G(s) = \frac{16}{s^2 + 4S + 16}, H(s) = KS$ ; the damping factor of the system is 0.8. Determine the overshoot of the system.
  - b) Determine the error co-efficient and static error for unity and non-unity systemG(s) = [8M] $\frac{1}{S(S+1)(S+10)}, H(s) = S + 2$
- 5 a) Using Routh-Hurwitz criterion, determine the stability of the closed loop system that [8M] has the following characteristic equation and also determine the number of roots that are in the right half s-plane and on the imaginary axis  $3S^4 + 7S^3 + 2S^2 + S + 8 = 0$ 
  - b) Find the angles of departure and arrival for all complex poles and zeros of the open [8M] loop transfer function of  $G(s)H(s) = \frac{K(S^2+S+2)}{S(S^2+9)}$ , K > 0.
- 6 a) Find the Gain margin and phase margin of the system if the open loop transfer [8M] function is  $:G(S) = \frac{5}{S(S+1)}$ 
  - b) Draw the polar plot of  $G(S)H(S) = \frac{K}{S(S+3)(S+5)}$  and there from determine range of K [8M] for stability using Nyquist Criterion.
- 7 a) Explain in detail about the electrical circuit diagram that represents the Lead [8M] Compensator
  - b) Determine the state controllability and observability of the system described by [8M]

|            | I-3        | 1    | 1 |            | 0  | 1] |   |
|------------|------------|------|---|------------|----|----|---|
| <i>x</i> = | -1         | 0    | 1 | <i>x</i> + | 0  | 0  | и |
|            | Lo         | 0    | 1 |            | 2  | 1  |   |
|            |            | _ [0 | ( | ן (        | 26 |    |   |
| 2,         | <i>y</i> – | - l1 | 1 | [ 0]       | X  |    |   |
| 2          |            |      |   |            |    |    |   |
| *          |            |      |   |            |    |    |   |

2

2 of 2

\*\*\*\*



Code No: RT31043

Time: 3 ho



### III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2017 CONTROL SYSTEMS

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

| urs |                                                                 | Max. Marks: 70 |
|-----|-----------------------------------------------------------------|----------------|
|     | Note: 1. Question Paper consists of two parts (Part-A and Part- | - <b>B</b> )   |
|     | 2. Answering the question in <b>Part-A</b> is compulsory        |                |
|     | 3. Answer any <b>THREE</b> Questions from <b>Part-B</b>         |                |
|     |                                                                 |                |

(Normal and semi & polar graph sheet are the supplied)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

### PART -A

| 1 | a) | What are advantages the negative feedback of loop with examples            | [3M] |
|---|----|----------------------------------------------------------------------------|------|
|   | b) | What are the characteristics of servomotors?                               | [4M] |
|   | c) | Explain the response of a standard first order system for unit step input. | [4M] |
|   | d) | What are effects of adding zeros to G(s) H(s) on the root loci?            | [4M] |
|   | e) | Define phase margin and gain margin.                                       | [4M] |
|   | f) | Why compensation is necessary in feedback control system.                  | [3M] |

#### PART -B

2 a) Find transfer function  $\theta(s)/T(s)$ .

[8M]



b) Derive the Mason's gain formula of signal flow graph. [8M]

3 a) Derive the transfer function and develop the block diagram of field controlled DC [8M] servo motor.

b) Find the transfer function for control function shown below figure using Mason's [8M] gain formula





- 4 a) The closed loop transfer function of unity feedback control system is given [8M]  $by \frac{C(s)}{R(s)} = \frac{1}{s^2 + 4s + 5}$ Find Damping ratio, natural undamped response frequency, percentage peak overshoot.
  - b) For a unity feed-back system whose open loop transfer function is [8M]  $G(s) = \frac{1}{(1+0.1S)(1+2S)}$ , find the position, velocity and acceleration error constants.
- 5 a) Using Routh-Hurwitz criterion, determine the stability of the closed loop [8M] system that has the following characteristic equation and also determine the number of roots that are in the right half s-plane and on the imaginary axis  $S^3 + 2S^2 + S + 8 = 0$ 
  - b) Find the angles of asymptotes and the intersect of the asymptotes of the root [8M] locus of the following equation when K varies from  $-\infty$  to  $\infty$  $S^3 + 5S^2 + S + K(S + 1) = 0$

6 The open loop transfer function of a unity feedback system is given [16M] 
$$by \frac{10(S+3)}{S(S+2)(S^2+4S+100)}$$
, draw the bode plot, find the gain margin and phase margin and comment on stability by bode plot.

- 7 a) Draw the electrical circuit diagram that represents the Lag-Lead Compensator and [8M] explain in detail.
  - b) What are the merits and demerits of state variable techniques? [8M]

\*\*\*\*\* 2 of 2