## III B.Tech II Semester Supplementary Examinations, April - 2017

DESIGN AND ANALYSIS OF ALGORITHMS
(Common to Computer Science Engineering and Information Technology)

## Answer any FIVE Questions <br> All Questions carry equal marks <br> *****

1 Solve the following recurrence relations and give a $\Omega$ bound for each of them:
a) $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 3)+1$
b) $\mathrm{T}(\mathrm{n})=5 \mathrm{~T}(\mathrm{n} / 4)+\mathrm{n}$
c) $T(n)=9 T(n / 3)+n^{2}$
d) $\mathrm{T}(\mathrm{n})=49 \mathrm{~T}(\mathrm{n} / 25)+\mathrm{n}^{3 / 2} \log \mathrm{n}$
e) $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\mathrm{n}^{\mathrm{c}}$, where $\mathrm{c}>=1$, a constant

2 a) Explain the usefulness of the following functional operations on sets.
I. MIN
II. DELETE
III. FIND
IV. UNION
V. INSERT
b) Write the procedures for Union and Find Algorithms.

3 a) Briefly explain the Quick Sort Algorithm with suitable example.
b) Derive all its worst case, best case and average case time complexities.

4 a) Describe the Knapsack problem using greedy method.
b) Explain about Single source shortest path problem.

5 a) Define dynamic programming. What is matrix chain multiplication protocol? Give the solution for the problem of matrix chain mutiplication and derive it's time complexity.
b) Explain about optimal binary search trees.

6 a) Define Back Tracking. Describe the 4-queens problem using backtracking.
b) Briefly explain graph coloring using backtracking.

7 a) Illustrate LCBB solution to solve the knapsack problem.
b) What do you mean by bounding? Explain how these bound are useful in branch and bound methods?

8 a) Compare and contrasts between NP-HARD and NP-COMPLETE.
b) Briefly explain Cooks-theorem.

