Code No: R32053

Set No. 1

III B.Tech II Semester Supplementary Examinations, November - 2017
 DESIGN AND ANALYSIS OF ALGORITHMS
 (Common to Computer Science and Engineering and Information Technology)

Time: 3 hours

Max. Marks: 75

Answer any FIVE Questions All Questions carry equal marks

1 a) Compare Big-oh notation and Little-oh notation. Illustrate with an example.
b) Describe best case, average case and worst case efficiency of an algorithm.

2 a) Describe the adjacency list representation of the graphs.
b) What is Hamiltonian cycle? Discuss a backtracking algorithm that finds all the Hamiltonaian cycles in a graph

3 a) Analyze the time complexity of merge sort for best, average and worst cases.
b) Discuss in detail about Greedy methods.
b) Write a short note on BFS.

5 a) Write an algorithm for 0/1 Knapsack Problem using Dynamic Programming.
b) Consider three stages of a system with $\mathrm{rl}=0.3, \mathrm{r} 2=0.5, \mathrm{r} 3=0.2$ and $\mathrm{c} 1=30, \mathrm{c} 2=20, \mathrm{c} 3=30$ Where the total cost of the system is $\mathrm{C}=80$ and $u 1=2, u 2=3, u 3=2$ find the reliability design.

6 a) Write dynamic programming solution for the traveling sales person problem for the network with the cost adjacency matrix. Assume node 1 as the home city.

0	10	15	30
4	0	9	11
5	13	0	10
7	7	8	0

b) Explain the matrix chain multiplication with an example

7 a) Describe the Backtracking technique to m-coloring graph. Explain with an example.
b) Let $\mathrm{w}=(5,10,10,25)$ and $\mathrm{m}=25$. Find all possible subsets of W that sum to M using fixed tuple length and variable tuple length.

8 a) Give brief description about the cooks theorem.
b) Briefly explain NP-hard and NP-completeness with example.

