

Code No: RT32054

SET - 1

III B. Tech II Semester Regular Examinations, April - 2017 **DESIGN AND ANALYSIS OF ALGORITHMS**

 $\langle \alpha$

		(Common to Computer Science Engineering and Information Technology)	
Ti	me: 3	B hours Max.	Marks: 70
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is compulsory 3. Answer any THREE Questions from Part-B 	
		PART –A	
1	a)	What is Amortized analysis? Explain.	[4M]
	b) c)	Explain the basic principle of Divide and Conquer method. Define Minimum Cost Spanning tree and list its applications.	[3M] [4M]
	d)	Compare the time complexities of solving the All Pairs Shortest Path problem using Floyds algorithm and using the Dijkstra's algorithm by varying the source node. Justify your answer.	[4M]
	e) f)	State the Subset Sum problem. Differentiate between Backtracking and Branch & Bound techniques.	[3M] [4M]
		PART -B	
2	a)	What are the Asymptotic notations? And give its properties.	[8M]
	b)	What are the features of an efficient algorithm? Explain with an example.	[8M]
3	a)	Show the result of running Merge sorting technique on the sequence 38 27 43 3 9 82 10	[8M]
	b)	Derive the Best, Worst and Average time complexities of Merge sorting technique.	[8M]
4	a)	Explain the general principle of Greedy method and also list the applications of Greedy method	[8M]
	b)	Explain the greedy technique for solving the Job Sequencing problem.	[8M]
5	a)	What is the principle difference between the divide and conquer technique and dynamic programming technique?	[8M]
	b)	Explain the Travelling sales man problem.	[8M]
6	a) b)	Give the solution to the 8-queens problem using backtracking Write an algorithm to determine the Hamiltonian cycle in a give graph using backtracking.	[8M] [8M]
7	a)	Explain how branch and bound technique is used to solve 0/1 knapsack problem.	[8M]
	b)	What are the differences between FIFO and LC branch and bound solutions?	[8M]

Code No: RT32054		le No: RT32054	R13	(SET - 2)	
		III B. Tech II Semester Reg DESIGN AND ANAL (Common to Computer Science Er	gular Examinations, April - 20 AYSIS OF ALGORITHMS	017	
Tiı	ne: 3	3 hours		Max. Marks: 70	
		Note: 1. Question Paper consis 2. Answering the questio 3. Answer any THREE	ts of two parts (Part-A and Par n in Part-A is compulsory Questions from Part-B *****	rt-B)	
		PAL	<u>RT –A</u>		
1	 a) b) c) d) e) f) 	Define Omega notation. Derive the worst case complexity of the State the general principle of greedy m Explain how reliability of a syst programming. Explain the Hamiltonian Circuit Problem State the difference between FIFO and	e Quick sort algorithm. ethod. tem is determined using on with an example? LC branch and bound algorithm	[3M] [4M] [4M] dynamic [4M] [4M] ns [3M]	
n	a)	<u>FA</u> What is A montized analysis and avala	<u>NI-D</u>	[0] / []	
Ζ	a) h)	What is the time complexity of followi	a with an example.	[8]VI]	
2		<pre>int fun(int n) { for (int i = 1; i <= n; i++) { for (int j = 1; j < n; j += i) { Sum = Sum +i*j; } return(Sum); } Eurlain the hotic methodology of diagonality </pre>	st.com	List the [QM]	
3	a) b)	Explain the basic methodology of di advantages of divide and conquer algor Explain the principle of Binary search	vide and conquer algorithm. ithm. h technique with an example :	List the [8M] and also [8M]	
	-)	List the drawbacks of it.	·····		
4		What is Minimum cost spanning tree minimum cost spanning tree and list so	? Explain an algorithm for geome applications of it.	nerating [16M]	
5	a)	Write the algorithm to compute 0/	1 Knapsack problem using o	lynamic [8M]	
	b)	programming and explain it. Explain the Optimal Binary Search Tre	e with an example.	[8M]	
6	a) b)	Explain the solution to the graph colori State and explain the subset sum proble	ng problem using backtracking em with an example.	. [8M] [8M]	
7	a) b)	What are the principles of branch and be Explain how the traveling salesperson and Bound.	oound algorithms? problem is solved by using LC	[6M] Branch [10M]	

SET - 3

III B. Tech II Semester Regular Examinations, April - 2017 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to Computer Science Engineering and Information Technology)

Time: 3 hours

Code No: RT32054

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in Part-A is compulsory
- 3. Answer any **THREE** Questions from **Part-B** *****

PART –A

1	a)	What is Amortized analysis of algorithms and how is it different from Asymptotic analysis?	[4M]
	b)	In how many passes does the Merge sort technique sorts the following sequence 3,27,4,11,45,39,2,16,56?	[3M]
	c)	What is the importance of knapsack algorithm in our daily life?	[4M]
	d)	Define Ontimal binary search tree with an example	[4M]
	a)	Evoluin & queens problem	[3M]
	C) f)	Explain 0-queens problem.	[3101]
	1)	PART -B	[4]11]
2	a)	What are the features of efficient algorithm? Explain with an example	[8M]
	u) b)	Explain the Omega and Theta notations	[01/1] [91/1]
	0)		[0IVI]
3	a)	Show the result of running Quick sorting technique on the sequence 38,27,43,3,9,82,10	[8M]
	b)	Derive the Best, Worst and Average time complexities of Quick sorting technique.	[8M]
4		Consider the following 5 jobs with their associated deadline and profit. Index $1 \ 2 \ 3 \ 4 \ 5$	[16M]
		job j2 j1 j4 j3 j5 deadline 1 2 2 3 1	
		profit 100 60 40 20 20	
		Solve the problem to earn maximum profit when only one job can be scheduled or processed at any given time.	
5	a)	Explain the methodology of Dynamic programming. List the applications of Dynamic programming.	[8M]
	b)	Describe the Matrix multiplication chains problem. Apply the recursive solution of dynamic programming to determine optimal sequence of pair wise matrix multiplications.	[8M]
6	a)	Explain the basic principle of Backtracking and list the applications of backtracking	[8M]
	b)	Using backtracking technique solve the following instance for the subset problem $s=(1,3,4,5)$ and $d=11$.	[8M]
7	a)	What are the differences between backtracking and branch and bound solutions?	[8M]
	b)	Explain the LC branch and bound algorithm.	[8M]

Code No: RT32054

R13

III B. Tech II Semester Regular Examinations, April - 2017 DESIGN AND ANALYSIS OF ALGORITHMS

(Common to Computer Science Engineering and Information Technology)

Ti	me: 3	3 hours	Max. Marks: 70
		 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is compulsory 3. Answer any THREE Questions from Part-B <pre>*****</pre>	
		<u>PART –A</u>	
1	a) b)	What are the Asymptotic notations and its properties? In how many passes does the Quick sort technique sorts the following	[4M] [3M]
	c)	sequence 3,27,4,11,45,39,2,16,56? What is the time complexity of the Job sequencing with deadlines using greedy algorithm?	g [4M]
	d) e) f)	What is Travelling Sales Man Problem? Explain Define Backtracking? List the applications of Backtracking. Explain LC branch and bound algorithm	[3M] [4M] [4M]
	,	PART -B	
2	a)	What is space complexity? Illustrate with an example for fixed and variable part in space complexity?	[8M]
	b)	Define Big Oh notation and also discuss its properties.	[8M]
3	a)	Determine the number of passes required to search the element 44 in the following list of elements 5,12,17,23,38,44,77,84,90.	[8M]
	b)	Write the Binary search algorithm and analyze for its best, worst and average case time complexity.	[8M]
4	a)	Explain the Single source shortest path problem with an example.	[8M]
	b)	What is the need for generating a spanning tree? Explain an algorithm for generating spanning tree.	[8M]
5	a)	How the reliability of a system is determined using dynamic programming? Explain	[10M]
	b)	Explain the Knapsack problem with an example?	[6M]
6		State n -queens problem and Explain 8-queens problem using backtracking.	[16M]
7	a)	State the concept of branch and bound method and also list its applications.	[8M]
	b)	Solve the Travelling Salesman problem using branch and bound algorithms.	[8M]
