

Code No: **R42021**

Set No. 1

IV B.Tech II Semester Supplementary Examinations, July/August - 2017

DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1 a) Define continuous and discrete time signals with neat schematics? [6]
 - b) Find whether the following signals are periodic or not
 - $3\cos\left(17\pi t + \frac{\pi}{3}\right) + 2\sin\left(19\pi t \frac{\pi}{3}\right)$

 - u(t) u(t 10) $\cos\left(\frac{1}{3}t\right) + \sin\left(\frac{1}{4}t\right)$ [6]
 - Define linear time invariant system with example. [3]
- Obtain the Z-transform of the following

(i)
$$X(S) = \frac{a}{s^2(s+a)}$$
 (ii) $X(S) = \frac{s}{(s^2 - \omega^2)}$ [8]

b) Find the Z-Transform of the following

(i)
$$F(S) = \frac{1}{s^2(s+1)}$$
 (ii) $f(t) = t\sin(\omega t)$ [7]

- 3 a) Explain the any two examples of data control systems. [8]
 - b) Discuss about the sample and hold operations. [7]
- A discrete time system is described by the difference equation.

$$Y(K+2)+5Y(K+1)+6Y(K)=u(K)$$

$$Y(0) = Y(1) = 0; T = 1Sec.$$

Determine a state model in canonical form.

- [8] b) Explain the methods for computation of state transition matrix? [7]
- 5 a) Derive the relation between controllability, observability and transfer function. [8]
 - b) Examine whether the discrete data system given below.

$$X(K+1) = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} X(K) + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u(K)$$

$$Y(K) = \begin{bmatrix} 1 & 0 \end{bmatrix} X(K)$$

Is (i) State controllable (ii) Output controllable

[7]

- 6 a) Explain the following
 - (i) Constant frequency loci (ii) Constant damping loci [8]
 - b) State and explain Jury stability test applied to discrete time controls. [7]

Code No: **R42021 R10 Set No. 1**

7 a)	Explain the design procedure of lead-lag compensator in W-plane.	[8]
b)	Explain the design procedure in the ω -plane of lag compensator.	[7]

8 Write short notes on the following:

a) Ackerman's formula

b) Necessary conditions for pole placement

[15]

MMM/FilestRatiker.com