

www.FirstRanker.com

Code No: **RT42021**

R13

Set No. 1

IV B.Tech II Semester Regular Examinations, April/May - 2017 **DIGITAL CONTROL SYSTEMS**

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B ****

PART-A (22 Marks)

1.	a)	What are the advantages of sampling process in control systems?	[4]
	b)	What is the property of linearity of Z-transforms?	[4]
	c)	What are the different ways of state space representation?	[4]
	d)	Write about the mapping of left half of the <i>s</i> -plane into the <i>z</i> -plane?	[4]
	e)	How a pulse transfer function in z-plane is converted into a rational function	[2]
		w-plane?	[3]
	f)	What is Ackermann's formula?	[3]
		PART-R (3r16 = 48 Marks)	

$\underline{\mathbf{PARI}}_{\mathbf{B}} (3x10)$ = 48 Marks)

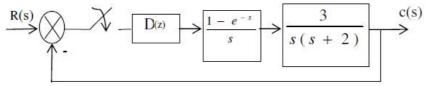
2.	a)	What are the advantages and disadvantages of digital control systems?	[8]
	b)	Give any one typical example of digital control systems and explain its operation?	[8]
3.	a)	Define Z transform. Calculate the Z-transform of the system having transfer	
		function, F(s); subject to a step input sampled at 3 Hz.	
		$F(s) = \frac{1}{1+2s}$	[8]
	b)	Solve the following differential equation using Z transform method	
		x(k+2) + 5x(k+1) + 6x(k) = 0	
		x(k+2) + 5x (k+1) + 6 x(k) = 0 Given that $x(0) = 0, x(1) = 1$	[8]
4.	a)	A linear time invariant system is represented by vector-matrix difference equation	
		X(k+1) = AX(k) + BU(k)	
		Obtain X(k) by Z transform method.	[8]
	b)	For a homogenous system given by	

$$X(k+1) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(k)$$

Obtain state transition matrix $\psi(k)$

[8]

1 of 2


Set No. 1

- 5. a) Explain about the relation between location of closed loop poles in the z-plane [8] and system stability?
 - b) Consider the discrete time unity feedback control system (with sampling [8] period T=1 sec) whose open loop pulse transfer function is given by

 $G(z) = \frac{K(0.3679z + 0.2642)}{(z - 0.3679)(z - 1)}$

Determine the range of gain K for stability by using Jury stability test.

- 6. A block diagram of a digital control system is shown in the figure. Design a [16] compensation D(z) to meet the following specifications.
 - i) Velocity error constant, $K_v \ge 3 \sec^{-1}$
 - ii) Phase Margin $\geq 50^{\circ}$
 - iii) Band Width = 1.1 rad / sec

- 7. a) Enumerate the design steps for pole placement (8]
 - b) Prove Ackermann's formula for the determination of the state feedback gain matrix K.
 [8]

Code No: **RT42021**

www.FirstRanker.com

IV B.Tech II Semester Regular Examinations, April/May - 2017 **DIGITAL CONTROL SYSTEMS** (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 70 Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B **** PART-A (22 Marks) 1. a) What are the advantages of digital control systems? [4] b) What are the limitations of Z-transforms? [4] c) Write the discrete time state equations of a pulse transfer function? [4] d) Write about the primary and complimentary strips? [4] e) What is bilinear transformation? [3] f) What are the necessary and sufficient conditions in design via pole placement? [3] **<u>PART-B</u>** (3x16 = 48 Marks)2. a) Explain about the frequency-domain characteristics of zero-order hold? [8] b) With suitable block diagram explain the sample and hold circuit. [8] 3. a) Obtain the Z-transform of the following function $F(s) = \frac{s+2}{s^2(s^2+2s+3)}$ [8] b) Solve for y(k) the equation $y(k) = r(k) - r(k-1) - y(k-1), k \ge 0,$ r(k) = 1; k even, r(k) = 0; k odd, y(-1) = r(-1) = 0[8] 4. a) Explain the concepts of controllability and observability? [6] b) Find the state model for the following difference equation and also find its state transition matrix. y(k+2) + 3y(k+1) + 2y(k) = 2u(k+1) + u(k)Assume initial conditions are zero. [10]

1 of 2

Code No: **RT42021**

www.FirstRanker.com

Set No. 2

5.		State and explain Jury's stability test	[8]
	b)	Using Jury's stability criterion, find the range of 'M' $z^{3} + Mz^{2} + 3Mz + M - 2 = 0$	[8]

R13

- 6. a) Explain the design procedure in the ω plane of lag compensator. [8]
 b) State the rules for the construction of root loci of a sampled data control system. [8]
- 7. A discrete-time regulator system has the plant equation

$$x(k+1) = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 4 \\ 3 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(k) + 7u(k)$$

Design a state feedback control system with u(k) = -Kx(k) to place the closed loop poles at 0.5 ± j0.5. [16]

www.FirstRanker.com

2 of 2

R13

Set No. 3

IV B.Tech II Semester Regular Examinations, April/May - 2017 DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours

Code No: **RT42021**

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

PART-A (22 Marks)

1. a)	What are the different types of sampling operations?	[4]
b)	State and explain the shifting theorem of Z transforms	[4]
c)	What is the concept of observability	[4]
d)	State the Jury's stability criterion	[4]
e)	What are the time response specifications	[3]
f)	Draw the block schematic of a closed loop control system (state space model)	[3]
	using a state feedback controller?	

<u>**PART-B**</u> (3x16 = 48 Marks)

2.	a)	State and explain the sampling theorem for data reconstruction?	[8]
	b)	Describe the operation of zero-order hold circuit? Obtain its frequency-	[8]
		domain characteristics?	
3.	a)	Obtain the Z-transform of the following function	
		$x(k) = \sum_{h=0}^{k} a^{h}$, where 'a' is a constant.	[8]
	b)	Obtain the inverse Z-transform of the following in the closed form.	
		(i) $F(z) = \frac{3z^2 + 2z + 1}{z^2 - 3z + 2}$ and (ii) $F(z) = \frac{z}{z^2 - 3z + 0.02}$	[8]

(1)
$$F(z) = \frac{1}{z^2 - 3z + 2}$$
 and (ii) $F(z) = \frac{1}{z^2 - 3z + 0.02}$ [8]

4. a) A discrete time system is described by the differential equation [8] y(k+2) + 3y(k+1) + 4y(k) = u(k) y(0) = 1, y(1) = 1, T = 0.8 secDetermine a state model in canonical form.

b) Explain the computation of state transition matrix. [8]

1 of 2

www.FirstRanker.com

www.FirstRanker.com

- 5. a) Explain bounded input, bounded output stability of a system [8]
 b) Consider the system described by y(k+2) = 2y(k+1) 5y(k) + 10r(k+2) 3r(k+1) + 4r(k), Where r(k) is the input and y(k) is the output of the system. Determine the stability of the system. [8]
- 6. The open loop transfer function of a unity feedback digital control system is given as

$$G(z) = \frac{K(z+0.5)(z+0.2)}{(z-1)(z^2 - z + 0.5)}$$

Code No: **RT42021**

Sketch the root loci of the system for $0 < K < \infty$. Indicate all important information on the root loci [16]

7. A discrete-time regulator system has the plant equation

$$\begin{aligned} x(k+1) &= \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k) \\ y(k) &= \begin{bmatrix} 1 & 1 \end{bmatrix} x(k) \end{aligned}$$

The state feedback control is described by u(k) = -Kx(k) where $K = \begin{bmatrix} K_1 & K_2 \end{bmatrix}$. Find the values K1 and K₂ so that the roots of the characteristic equation of the closed loop system are at 0.5 and 0.7. [16]

2 of 2

ww.FirstRanker.com

www.FirstRanker.com

Code No: **RT42021**

IV B.Tech II Semester Regular Examinations, April/May - 2017 **DIGITAL CONTROL SYSTEMS**

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 70

[8]

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	Explain the principle of operation of zero-order hold?	[4]
	b)	State initial and final value theorems of Z transforms?	[4]
	c)	What is the concept of controllability?	[4]
	d)	State the conditions for the Jury's stability?	[4]
	e)	Show that the steady-state error of a Type-1 system is zero for step-input?	[3]
	f)	Why is pole-placement design necessary? Explain?	[3]

<u>**PART-B**</u> (3x16 = 48 Marks)

2.	a)	What are the advantages of sampling process in control systems? Give the	
		mathematical description of ideal sampling process.	[8]
	b)	Explain the advantages and disadvantages of digital control systems.	[8]

3. a) Given the discrete time system

$$y(k) - \frac{1}{\sqrt{2}}y(k-1) + \frac{1}{4}y(k-2) = u(k) + \frac{1}{3}u(k-2)$$

Determine the pulse transfer function.

b) Obtain the inverse Z-transform of the following in the closed form.

$$F(z) = \frac{0.368z^2 + 0.478z + 0.154}{z^2(z-1)}$$
[8]

- 4. a) Given a state equation in continuous-time, how is it discretized to obtain the [8] equivalent discrete-time state model? Describe?
 - b) Consider the discrete control system represented by the transfer function. [8]

$$G(z) = \frac{z^{-1}(1+z^{-1})}{(1+0.5z^{-1})(1-0.5z^{-1})}$$

Obtain the state space representation in the diagonal form.

1 of 2

www.FirstRanker.com

R13

Set No. 4

- 5. a) How are primary and complementary strips formed? Discuss? [8]
 b) Consider the following characteristic equation
 P(z) = z⁴ 1.368z³ + 0.4z² + 0.08z + 0.002 = 0. Determine whether or not any of the roots of the characteristic equation lie outside the unit circle in the z plane.
- 6. Draw the root locus in the z-plane for the system shown in figure for $0 < K < \infty$. Consider the sampling period T = 2sec.

$$\begin{array}{c}
\underline{R(s)} + & \underbrace{E(s)}_{T} & \underbrace{E^{*}(s)}_{T} & \underbrace{1 - e^{-sT}}_{S} & \underbrace{K}_{S(S+1\cdot)} & \underbrace{Y(s)}_{S} \\
\end{array}$$
[16]

7. Consider system described by x(k + 1) = Ax(k) + Bu(k) y(k) = Cx(k)with $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ Compute K so that the control law u(k) = -Kx(k) places the closed loop poles at $-0.2 \pm j0.5$ and -0.8. [16]

