

www.FirstRanker.com

Code No: RT42021

IV B.Tech II Semester Supplementary Examinations, July/August - 2017 DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Time: 3 hours

1

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

•	a)	Explain the zero order hold device.	[3]
	b)	What are the limitations of z-transform method?	[4]
	c)	Explain the concept of state transition matrix?	[3]
	d)	What are the conclusions from the general mapping between the s and z planes	
		by the z transform?	[4]
	e)	What are the steady state specifications? Explain in brief.	[4]
	f)	State the necessary condition for design of state feedback controller through	
		pole placement?	[4]

<u>**PART-B**</u> (3x16 = 48 Marks)

2.	a)	Explain the following examples of digital control system (i) A step motor control system (ii) Microprocessor controlled system	101
		(i) A step motor control system (ii) wheroprocessor controlled system	[٥]
	b)	List out the advantages of digital systems?	[5]
	c)	State the sampling theorem?	[3]
3.	a)	The input-output of a sampled data system is described by the difference equation $v(k+2) + 3v(k+1) + 4v(k) = r(k+1) - r(k)$ Determine the	[8]
		nulse transfer function	
	1 \		101
	b)	Find the inverse z-transform function of $\frac{z}{z^2+z+z}$	[8]
		2-+2+2	
4.		Define controllability and observability of discrete time systems. For the	
		following system,	
		$Y(z) = z^{-1}(1+0.8z^{-1})$	

$$\frac{Y(z)}{U(z)} = \frac{z^{-1}(1+0.8z^{-1})}{1+1.3z^{-1}+0.4z^{-2}}$$

Determine whether the system is observable and controllable.

[16]

- 5. Check if all the roots of the following characteristic equations lie within the unit circle
 - (i) $5z^2 2z + 2 = 0$ (ii) $z^3 - 0.2z^2 - 0.25z + 0.05 = 0$ (iii) $z^4 - 1.7z^3 + 1.04z^2 - 0.268z + 0.024 = 0$ [16]

1 of 2

www.FirstRanker.com

Code No: **RT42021**

R13

6. A block diagram of a digital control system is shown in Figure 1. Design a compensator D(z) to meet the following specifications:

- (a) Velocity error constant, $Kv \ge 4$ Sec.,
- (b) Phase margin ≥ 400 and
- (c) Band width =1.5 rad./sec.

Figure.1

- 7. a) Derive the necessary condition for the digital control system X(k + 1) = AX(k) + Bu(k) Y(k) = CX (k) to be Controllable. [10]
 - b) Derive the sufficient conditions for design of state feedback controller through pole placement? [8]

www.FirstRanker.com