

Code No: RT32042

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours

Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

Answering the question in **Part-A** is compulsory
Answer any **THREE** Questions from **Part-B**

PART -A

1	a)	Test whether the following signal is periodic or not if periodic find the fundamental period $\sin\sqrt{2}\pi t$	[4M]
	b)	Find the DFT of a sequence $x(n) = \{1, 1, 2, 2\}$	[4M]
	c)	Give block diagram representation of linear constant-coefficient difference equations.	[4M]
	d)	By impulse invariant method obtain the digital filter transfer function and the	[4M]
	,	differential equation of the analog filter $h(s) = 1/s + 1$	
	e)	What are the applications of multi rate DSP?	[3M]
	f)	List special feature of DSP architecture.	[3M]
		<u>PART -B</u>	
2	a)	Determine whether each of the following systems defined below is (i) casual (ii) linear (iii) dynamic (iv) time invariant (i) $y(n) = \log_{10}[\{x(n)\}]$ (ii) $y(n) = x(-n-2)$	[12M]
	1 \	$(111) y(n) = \cosh[nx(n) + x(n-1)]$	E 43 43
	b)	Give the frequency domain representation of discrete time signals.	[4M]
3	a)	Compute the DFT for the sequence $\{1, 2, 0, 0, 0, 2, 1, 1\}$. Using radix -2 DIF FFT and radix 2 DIT. FFT algorithm	[8M]
	h)	-2 DI1- FF1 algorithm. Derive the equation to implement a butterfly structure In DITEET algorithm	[8M]
	0)	Denve the equation to imploment a battering structure in Diffi i a agointini.	[0101]
4	a)	Realize the filter H(z)= $(z^{-1}-a)(z^{-1}-b)/(1-az^{-1})(1-bz^{-1})$ in cascade and parallel forms.	[8M]
	b)	State and prove time convolution property of Z-Transforms.	[8M]
5	a)	Obtain the impulse response of digital filter to correspond to an analog filter with impulse response $h_a(t) = 0.5 e^{-2t}$ and with a sampling rate of 1.0kHz using impulse invariant method.	[8M]
	b)	Compare bilinear transformation and impulse invariant mapping.	[8M]
6	a)	Explain the decimation and interpolation process with an example. Also find the	[8M]
	b)	The sequence $x(n)=[0,2,4,6,8]$ is interpolated using interpolation sequence $b_k = [1/2,1,1/2]$ and the interpolation factor is 2.find the interpolated sequence $y(m)$.	[8M]
7	a) b)	Describe the multiplier/adder unit of TMS320c54xx processor with a neat block diagram. What are interrupts? What are the classes of interrupts available in the TMS320C5xx processor?	[8M] [8M]

Code No: RT32042

SET - 2

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours

Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

Answering the question in **Part-A** is compulsory
Answer any **THREE** Questions from **Part-B**

<u>PART –A</u>

1	a)	Test whether the following signal is periodic or not , if periodic find the fundamental period $\sin 20 \pi t + \sin 5\pi t$	[4M]
	b)	Find the values of WNk, When N=8, $k=2$ and also for $k=3$.	[4M]
	c)	Draw the direct form realization of FIR system.	[4M]
	d)	What are the properties of chebyshev filter?	[3M]
	e)	Find the spectrum of exponential signal decimated by factor 2.	[4M]
	f)	What are the advantages of VLIW architecture? <u>PART -B</u>	[3M]
2	a)	Determine the impulse response of the filter defined by $y(n)=x(n)+by(n-1)$.	8M]
	b)	A system has unit sample response $h(n)$ given by	[8M]
	,	$h(n)=-1/\delta(n+1)+1/2\delta(n)-1-1/4\delta(n-1)$. Is the system BIBO stable? Is the filter	
		causal? Justify your answer.	
3	a)	Find the DFT of the sequence $x[n] = \{1, 2, 3, 4, 5, 6, 7, 8\}$.	[8M]
	b)	Explain the use of FFT algorithms in linear filtering and correlation.	[8M]
4	a)	Determine the cascade and parallel realization for the system transfer function	[8M]
		$H(z) = 3(z^2+5z+4) / (2z+1)(z+2).$	
	b)	State and prove frequency convolution property of Z-Transforms.	[8M]
5	a)	Design an ideal high pass filter with a frequency response	[8M]
		Hd (ejw) = 1 for $\pi/4 \le w \le \pi$	
		= 0 for $ w \le \pi/4$ Find the values of h(n) for N = 11 using	
	b)	Hamming window. Find H (z) and determine the magnitude response.	[9] /]
	0)	Derive the expression for Bi inteal transform.	[0IVI]
6	a)	Explain the operation used in DSP to increase the sampling rate.	[8M]
	b)	The sequence $x(n)=[0,2,4,6,8]$ is interpolated using interpolation sequence	[8M]
		bk = $[1/2,1,1/2]$ and the interpolation factor is 2.find the interpolated sequence y(m).	
7	a)	Explain the different types of interrupts in TMS320C54xx Processors.	[8M]
	b)	Describe any four data addressing modes of TMS320c54xx processor.	[8M]

Code No: RT32042

SET - 3

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours

Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

Answering the question in **Part-A** is compulsory
Answer any **THREE** Questions from **Part-B**

PART -A

1	a)	Test the following systems for time invariance $y(n)=n x^2(n)$	[4M]		
	b)	Define DFT and IDFT	[4M]		
	c)	What are the applications of Z-Transforms?	[4M]		
	d)	What are the advantages of Kaiser widow?	[4M]		
	e)	What are "decimation", "decimation factor "and "down sampling"?	[3M]		
	f)	List the on-chip peripherals	[3M]		
PART -B					
2	a)	Determine and sketch the magnitude and phase response of the following systems (i) $y(n) = 1/3 [x(n) + x(n-1) + x(n-2)]$ (ii) $y(n) = \frac{1}{2}[x(n) - x(n-1)]$ (iii) $y(n) - \frac{1}{2}y(n-1)=x(n)$	[12M]		
	b)	Determine the impulse response of the filter defined by $y(n)=x(n)+by(n-1)$.	[4M]		
3	a)	Determine IDFT of the following (i) $X(k)=\{1,1-i2,-1,1+i2\}$ (ii) $X(k)=\{1,0,1,0\}$	[8M]		
	b)	Find the DFT of the sequence $x[n] = \{1, 2, 3, 4, 5, 6, 7, 8\}$ using DITFFT.	[8M]		
4	a)	Obtain the direct form I, direct form II and Cascade form realization of the following system functions.	[8M]		
	1 \	Y(n) = 0.1 y(n-1) + 0.2 y(n-2) + 3x(n) + 3.6 x(n-1) + 0.6 x(n-2).	[0] []		
	b)	Explain Transposed forms.	[8M]		
5	a)	Comparison of FIR and IIR filters.	[8M]		
	b)	What is Hamming Window function? Obtain its frequency domain characteristics.	[8M]		
6	a)	What is Multi Rate Signal Processing? Explain any two applications of multirate signal processing.	[8M]		
	b)	Derive the Frequency domain Transfer function of a Decimator.	[8M]		
7	a)	List the major architectural features used in DSP system to achieve high speed program execution.	[8M]		
	b)	With examples explain the different addressing formats supported by DSP processors for various signal processing applications.	[8M]		

(**R13**)

SET - 4

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017 DIGITAL SIGNAL PROCESSING

(Electronics and Communication Engineering)

Time: 3 hours

Code No: RT32042

Maximum Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A** is compulsory

3. Answer any **THREE** Questions from **Part-B** *****

<u>PART –A</u>

1	a)	Test the following systems for time invariance a $x^{(n)}$.	[3M]
	b)	What are the advantages of FFT over DFT.	[4M]
	c)	Find the Z-transform of $x(n) = (1/8)^n u(n)$ and its ROC.	[4M]
	d)	What is the necessary and sufficient condition for linear phase Characteristics in FIR filter?	[4M]
	e)	Explain the term up sampling and down sampling.	[3M]
	f)	What are the different stages in pipelining? <u>PART -B</u>	[4M]
2	a)	A system has unit sample response $h(n)$ given by $h(n)=-1/\delta(n+1)+1/2\delta(n)-1-1/4 \delta(n-1)$. Is the system BIBO stable? Is the filter causal? Justify your answer	[8M]
	b)	Give the frequency domain representation of discrete time signals and systems.	[8M]
3	a) b)	How is the FFT algorithm applied to determine inverse discrete Fourier transform? Derive the equation to implement a butterfly structure In DIFFFT algorithm	[8M] [8M]
4	a)	Obtain the direct form I, direct form II and Cascade form realization of the following system functions.	[8M]
	b)	Y(n) = 0.1 y(n-1) + 0.2 y(n-2) + 3x(n) + 3.6 x(n-1) + 0.6 x(n-2). Prove that FIR filter has linear phase if the unit impulse response satisfies the condition $h(n)=h(N-1-n)$, $n=0,1,,M-1$. Also discuss symmetric and antisymmetric cases of FIR filter.	[8M]
5	a)	Determine H(Z) for a Butterworth filter satisfying the following specifications: $0.8 \le H(e^{j\omega} \le 1, \text{ for } 0 \le \omega \le \pi/4$ $ H(e^{j\omega} \le 0.2, \text{ for } \pi/2 \le \omega \le \pi$	[8M]
	b)	Assume T= 0.1 sec. Apply bilinear transformation method Use bilinear transformation method to obtain H(Z) if T= 1 sec and H(s) is $1/(s+1)(S+2)$, $1/(s2+\sqrt{2} s+1)$.	[8M]
6	a)	With necessary derivation explain the operation of sampling rate conversion by a non integer.	[8M]
	b)	The sequence $x(n) = [0,3,6,9]$ is interpolated using interpolation sequence $bk=[1/3, 2/3,1,2/3,1/3]$ and the interpolation factor of 3. Find the interpolated sequence y (m).	[8M]
7	a)	Explain Memory Access schemes in DSPs.	[8M]
	b)	Explain the memory interface block diagram for the TMS 320 C5x processor.	[8M]
