II B. Tech I Semester Regular Examinations, October/November - 2017
 DIGITAL LOGIC DESIGN

(Com to CSE \& IT)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) Find the 10 's complement of 3826 .
b) Find the complement of the function: $A^{\prime} B(C+D)+B^{\prime} C^{\prime}+A B^{\prime} C$.
c) Draw the 4 -varaiable K-map.
d) Write the truth table of a full subtractor.
e) What is a state diagram?
f) Write the differences between the Combinational and sequential circuits.

PART -B

2. a) Convert the following numbers to Octal:
(i) $(1011.1010)_{2}$
(ii) $(\mathrm{BABA})_{16}$
b) Perform the binary subtraction using 1's and 2's complement methods.
(110011)2-(1110011)2
3. a) Convert the given Boolean function into standard sum of minterms form.

$$
F=x^{\prime} y+y^{\prime} z+x z,
$$

b) Explain the theorems and properties of Boolean algebra.
4. Simplify the following Boolean function
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,6,8,13,14) ; \mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(2,4,10)$
using K-Map method in (a)SOP form (b) POS form
5. a) Design a full subtractor circuit with basic gates.
b) Write the HDL dataflow description of a 8 X 1 multiplexer.
6. a) Explain the operation of a JK flip-flop with the truth table.
b) Draw the diagram of Mealy type state machine for serial adder and explain its operation.
7. a) Design a decade counter using T flip-flops.
b) Explain the operation of a 4-bit shift register using RS flip-flops.

SET - 2

II B. Tech I Semester Regular Examinations, October/November - 2017
 DIGITAL LOGIC DESIGN

(Com to CSE \& IT)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) What are the universal gates? Why they are called as universal gates?
b) What is Minterm and Maxterm
c) Define the essential prime implicants in a K-map method.
d) What is a multiplexer? Write its applications.
e) What is a mealy machine
f) Write the differences between the synchronous and asynchronous sequential circuits.

PART -B

2. a) Convert the following numbers to Binary:
(i) $\quad(59.425)_{10}$
(ii) $(46 \mathrm{BF})_{16}$
b) Perform the subtraction in binary using 1's and 2's complement methods. $(255)_{10}-(408)_{10}$
3. a) Convert the following Boolean function into standard product of maxterms form.

$$
F=A^{\prime} B+C+B^{\prime} D^{\prime}
$$

b) State and prove the De Morgan's laws.
4. Simplify the following Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,8,10,15) ; \mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,9)$ using K-Map method in
(a) SOP form (b)
(b) POS form
5. a) Design an 8 X 1 multiplexer with basic gates.
b) Write the gate level HDL description of the 4:16 decoder.
6. a) What is the drawback of JK flip-flop? How is it eliminated in Master Slave flip-flop? Explain with diagram
b) What are the capabilities and limitations of finite state machines? Explain.
7. a) Design a modulo-10 ripple counter using RS flip-flops.
b) Explain the operation of a 4-bit shift register using T flip-flops.

SET - 3

II B. Tech I Semester Regular Examinations, October/November - 2017
 DIGITAL LOGIC DESIGN

(Com to CSE \& IT)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART - A

1. a) Find the 1 's and 2 's complement of the decimal number 101.
b) What is a canonical form
c) What do you mean by don't care combinations.
d) What is a de-multiplexer? Write its applications.
e) Write the features of Moore machine.
f) What are the differences between Johnson and ripple counter.

PART -B

2. a) Convert the following number to Hexadecimal:
(i) $\quad(925.25)_{8}$
(ii) $\quad(1111010.10)_{2}$
b) Perform the binary subtraction using 1's ând 2's complement method. $(1111101)_{2}-(100111110)_{2}$
3. a) Write the theorems and postulates of Boolean algebra.
b) Reduce the following Boolean function to four literals and draw the logic diagram: $\quad\left(A^{\prime}+C\right)\left(A^{\prime}+C^{\prime}\right)\left(A+B+C^{\prime} D\right)$
4. Simplify the following Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(2,4,6,10,12) ; \mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,8,9,13)$ using K-Map method in
(a) SOP form (b)POS form
5. a) Design a 4-bit binary adder-subtractor circuit with basic gates.
b) Write an HDL dataflow description of a 4-bit adder-subtractor circuit of unsigned numbers.
6. a) Explain the operation of JK master-slave flip-flop.
b) Obtain the state table and state diagram for a sequence detector to recognize the occurrence of sequence bits $110 \& 001$.
7. a) Design a Mod-10 counter using RS flip-flops
b) Explain the operation of a 4-bit shift register using JK flip-flops.

1 of 1

II B. Tech I Semester Regular Examinations, October/November - 2017
 DIGITAL LOGIC DESIGN

(Com to CSE \& IT)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) Convert the binary number 10111001 to gray code.
b) Write the basic Boolean theorems.
c) Draw the 5 -variable K-Map.
d) What is a decoder? Write its applications.
e) What is a Flip flop
f) What is a Ring counter.

PART -B

2. a) Express the following numbers in decimal:
(i) $(126.25)_{8}$
(ii) $\quad(166.425)_{16}$
b) Perform the subtraction in binary using 1 's and 2 's complement methods. $(97)_{10}-(255)_{10}$
3. a) Find the dual and complement of the following function:

$$
\mathrm{A}^{\prime} B D^{\prime}+B^{\prime}\left(A C^{\prime}+D^{\prime}\right)+A^{\prime} B C^{\prime}
$$

b) Implement the following Boolean function with only two input NOR gates: $F=\left(A B^{\prime}+D^{\prime}\right) E+C\left(A^{\prime}+B^{\prime} D\right)$
4. a) Simplify the following Boolean function with the don't conditions d using Kmap method:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(4,5,7,12,13,14) ; \mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,9,11,15)$
b) Realize the simplified expression obtained in Q. 4(a) with only NAND gates.
5. a) Design a 4:16 decoder with basic gates.
b) Write an HDL behavioral description of a 16X1 multiplexer.
6. a) Explain the D flip-flop with the help of truth table and excitation table.
b)

Convert the following Mealy machine into a corresponding Moore machine.

PS	NS, Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
A	$\mathrm{C}, 0$	$\mathrm{~B}, 0$
B	$\mathrm{A}, 1$	$\mathrm{D}, 0$
C	$\mathrm{B}, 1$	$\mathrm{~A}, 1$
D	$\mathrm{D}, 1$	$\mathrm{C}, 0$

7. a) Design a Mod- 12 counter using D flip-flops.
b) Explain the operation of a 4-bit shift register using D flip-flops.
