

Code No: RT21053

R13

SET - 1

II B. Tech I Semester Supplementary Examinations, May/June - 2017 **DIGITAL LOGIC DESIGN**

Ti.	na. 2	(Com. to CSE, IT) Max. Mar	dza. 70
111	ne: 3		KS: /U
		Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A	
		3. Answer any THREE Questions from Part-B	
		<u>PART -A</u>	
1.	a)	Write first 20 numbers in radix-5	(3M)
	b)	Convert the following to the other canonical form: $F(x, y, z) = \sum (1, 3, 5)$	(4M)
	c)	Implement function $f = A\overline{B} + \overline{A}B$ using 2X1 MUX	(4M)
	d)	What is sequential circuit?	(3M)
	e)	Write the between register and counter	(4M)
	f)	Draw the block diagram of PLA PART –B	(4M)
		<u>IARI -D</u>	
2.	a)	Obtain the 1's and 2's complement of the following binary numbers 1010101, 0111000, 0000001, 10000, 000000 Also obtain 9's and 10's complement of the following decimal numbers 09900, 10000, 00000	(8M)
	b)	What is a reflected code? Write about reflected codes by giving examples.	(8M)
3.	a)	Show that the dual of the exclusive-OR is equal to its complement	(8M)
	b)	Draw a NAND logic diagram that implements the complement of the following function: $F(A, B, C, D) = \sum (0, 1, 2, 3, 6, 10, 11, 14)$	(8M)
4.	a)	Implement a 5-to-32-line decoder with four 3-to-8-line decoders with enable and a 2-to-4-line decoder	(8M)
	b)	Design 4 bit Magnitude Comparator and explain in detail	(8M)
5.	a)	What is difference between latch and flip flop? Explain about clocked RS flip flop using NAND gates	(8M)
	b)	Conversion of SR Flip Flop to JK Flip Flop	(8M)
6.	a)	Design a shift register with parallel load operations according to the following function table:	(8M)
		shift load Register operation	
		0 0 No change	
		0 1 Load parallel data 1 X Shift right	
	b)	Construct and explain a Johnson counter for ten timing signals	(8M)
	5)	constant and explain a common counter for the timing signals	(0111)

7. a) Write the difference between PROM, PLA and PAL

(8M)

(8M)

b) A Combinational circuit defined by functions
$$F_1(A,B,C) = \sum_{i=0}^{\infty} (3,5,6,7) \qquad F_2(A,B,C) = \sum_{i=0}^{\infty} (0,2,4,7)$$

Implement circuit with PLA

1 of 1