

R10

Set No. 1

Max. Marks: 75

Code No: **R32021**

III B.Tech II Semester Supplementary Examinations, April - 2017 **ELECTRICAL MACHINE DESIGN**

(Electrical and Electronics Engineering)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks *****

1	a)	What are the limitations in the design of Electrical Machines? Discuss.	[8M]
	b)	Explain in different cooling techniques used in electrical machines.	[7M]
2	a)	Explain the following terms: Back pitch, front pitch, winding pitch and Commutator pitch	[8M]
	b)	Find out whether the following windings are symmetrical or not i) 12 pole, 74 slot, 4 coil sides per slot, simplex wave winding ii) 4 pole, 63 slot, 3 coil sides per slot, duplex wave winding	[7M]
3	a)	Discuss in detail about the choice of specific electric and magnetic loadings for DC Machines	[7M]
	b)	Determine the total commutator losses for a 500 kW, 400 V, 800 rpm, 10 pole generator. Given commutator diameter = 0.8 m ; current density at brush contact = $40 \times 10^{-3} \text{ A/mm}^2$; brush pressure = 10 kN/m^2 ; co-efficient of friction = 0.28 ; brush contact drop 2 V	[8M]
4	a) b)	Compare the performances of single and three phase transformers in detail. Discuss in detail about different methods of cooling of transformers.	[8M] [7M]
5	a) b)	Discuss in detail about the design of single phase transformers. Estimate the dimensions of a 3 phase delta/star core type transformer rated at 200 kVA, $3000/400V$, 50 Hz. A suitable core with three steps having a circumscribing circle of 0.25 diameter and a leg spacing of 0.4 m is available. the emf per turn is 7V; assuming a current density, 2.5 A/m ² ; window space factor, 0.28 and a stacking factor of 0.9	[7M] [8M]
6	a) b)	Explain in detail about the design of the stator slots of wound rotor induction machines. Find the main dimensions of a 12 kW, 3 phase, 400 V, 50 Hz, 2810 rpm, squirrel cage induction motor having efficiency of 0.95 and a full load power factor of 0.89. Assume: Specific magnetic loading = 0.3 Wb/m^2 ; specific electric loading = 24000 A/m. Take the rotor peripheral speed as approximately 30 m/s at synchronous speed	[7M] [8M]
7	a) b)	Explain in detail about the design of the rotor slots of wound rotor induction machines. Calculate the equivalent resistance of rotor per phase with respect to stator, the current in each bar and end ring and the total copper loss for a 415 V, 50 Hz, 4 pole, three phase induction motor having the following data: Stator: Slots = 48; conductors in each slot =35; current in each conductor = 10A Rotor: Slots = 57; length of each bar =0.12 m; area of each bar = 9.5 X 5.5 mm ² ; mean diameter of end ring = 0.2 m; area of each end ring = 175 mm ² . Resistivity of copper is $0.02 \ \Omega/m$ and mm ² . Full load power factor is 0.85.	[7M] [8M]
8	a)	With the help of the equation, explain the output of Synchronous Machines in detail.	[7M]

- With the help of the equation, explain the output of Synchronous Machines in detail. 8 a)
 - Find the main dimensions of a 70 MVA, 11 kV, 50 Hz, 200 rpm, 3 phase water wheel b) [8M] generator. The average gap density is 0.55 Wb/m² and ampere conductors per meter are 32000. The peripheral speed should not exceed 40 m/s at normal running speed in order to limit the run-away peripheral speed.

www.FirstRanker.com