

Code No: RT31024 (R13) (SET - 1)

III B. Tech I Semester Supplementary Examinations, May - 2017 ELECTRICAL MACHINES - III

		ELECTRICAL MACHINES – III	
	Tin	(Electrical and Electronics Engineering) ne: 3 hours Max. Marks: 7	7 0
	1111	Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is compulsory 3. Answer any THREE Questions from Part-B	<u> </u>
		<u>PART -A</u>	
1	a)	Why the single phase inductor motor is not self starting?	[3M]
	b)	Is it possible to make a balanced three-phase, 6-pole with 48 slots? If not possible state the reasons.	[4M]
	c)	What are the conditions to be satisfied for parallel operation of alternators?	[4M]
	d)	Two reaction theory is applied only to salient pole machines. State the reasons.	[4M]
	e)	What is the function of synchronous condenser?	[4M]
	f)	What is power circle of a synchronous motor?	[3M]
		<u>PART -B</u>	
2	a)	Explain the role of compensating winding in the operation of AC series motor.	[8M]
	b)	Using double field revolving theory, explain the torque-slip characteristics of a single phase induction motor and prove that it cannot produce any starting torque.	[8M]
3	a)	What is armature reaction? Explain the effect of armature reaction on the terminal voltage of an alternator.	[8M]
	b)	Calculate the EMF of a 4 pole, 3-phase, star connected alternator running at 1500 r.p.m from the following data: Flux per pole = 0.3 Wb, Total number of slots= 48 , Conductors per slot (in two layers) = 4 , coil span = 150° .	[8M]
4	a)	What is voltage regulation? Explain the synchronous impedance method for the determination of voltage regulation of an alternator.	[8M]
	b)	A 3-phase generator rated at 25 MVA, 0.8 power factor lag, 13.8 kV is operating at normal voltage and rated load. The direct axis synchronous reactance is 7.62 Ω , quadrature axis synchronous reactance is 4.57 Ω and armature resistance is 0.15 Ω per phase. Determine the direct axis and quadrature axis components of armature current and internal induced voltage. Also find the regulation.	[8M]
5	a)	What is meant by synchronization? Explain the way of synchronizing an alternator to the infinite bus bars.	[8M]
	b)	The EMFs of two alternators are $3000\angle20^{\circ}\mathrm{V}$ and $2900\angle0^{\circ}\mathrm{V}$. Their synchronous impedances are $(2+j20)\Omega/\mathrm{phase}$ and $(2.5+j30)\Omega/\mathrm{phase}$. The load impedance is $(10+j4)\Omega/\mathrm{phase}$. Find the circulating current.	[8M]

Code No: RT31024 (R13) (SET - 1)

6 a) Explain the variation of current and power factor of a synchronous motor with [9M] excitation.

b) Derive an expression for torque developed in a synchronous motor. [7M]

7 a) What is hunting in a synchronous motor? Explain how it can be suppressed. [8M]

b) A 660V, 3-phase star-connected synchronous motor draws 50 kW at a power factor of 0.8 lagging. Calculate new current and power factor when the back e.m.f increases by 50%. The machine has synchronous reactance of 3 ohm and effective resistance is negligible.

WWW.FirstRaint2 of 2