II B. Tech I Semester Supplementary Examinations, Oct/Nov- 2017
 ELECTRONIC DEVICES AND CIRCUITS
 (Com. to EEE, ECE, EIE, ECC, CSE, IT, BME)

Max. Marks: 75
Time: 3 hours

Answer any FIVE Questions
 All Questions carry Equal Marks

1. a) Explain about Two - Dimensional motion of electron.
b) What is the force on a current carrying conductor in a magnetic field? Explain briefly.
(7M+8M)
2. a) Discuss the following with respect to semiconductor
i) doping \quad ii) Dopant \quad iii) donor \quad iv) acceptor.
b) Explain "Majority and minority carriers" in semiconductors.
($8 \mathrm{M}+7 \mathrm{M})$
3. a) Explain briefly about the switching characteristics of a diode?
b) List out the applications of tunnel diode and mention its advantages and disadvantages.
($10 \mathrm{M}+5 \mathrm{M}$)
4. a) A diode has an internal resistance of 20Ω and 1000Ω load from a 110 V rms source of supply. Calculate, i) The efficiency of rectification and
ii) The percentage regulation from no-load to full load.
b) Show that a Full wave rectifier is twice as efficiency as a Half wave rectifier.
($8 \mathrm{M}+7 \mathrm{M})$
5. a) Calculate the values of Q and Y if (i) $\beta=50$ (ii) $\beta=95$ (iii) $\beta=55$.
b) The Common Base d.c current gain of a transistor is 0.967 .If emitter current is 10 mA , What is the value of base current?
$(10 \mathrm{M}+5 \mathrm{M})$
6. a) A JFET has a drain current of 4 mA . If $\mathrm{I}_{\mathrm{DSS}}=8 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{GS}}(o f f)=6 \mathrm{~V}$. Find the value of V_{GS} and Vp .
b) Explain why an SCR is operated only in the forward biased condition.
($8 \mathrm{M}+7 \mathrm{M})$
7. a) Explain about Self Bias Amplifiers.
b) A Si transistors is used in the self - biasing arrangement of Figure with $\mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}$ and $R_{c}=1 \mathrm{~K} \Omega$. The Quiescent point is chosen to be $V_{C E}=6 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}$. A stability factor $S=10$ is desired. If $\beta=99$ find R_{1}, R_{2} and R_{E}.

8. a) Explain in detail about analysis of a transistor amplifier circuit biasing h - parameters.
b) Explain about Transistor Amplifier configurations.
($7 \mathrm{M}+8 \mathrm{M}$)
