

R13 SET - 1 Code No: RT21041

II B. Tech I Semester Supplementary Examinations, Oct/Nov - 2017 ELECTRONIC DEVICES AND CIRCUITS

		(Com. to ECE, EIE, ECC)	
Tir	ne: 3		1arks: 70
		Note: 1. Question Paper consists of two parts (Part-A and Part-B)	
		2. Answer ALL the question in Part-A	
		3. Answer any THREE Questions from Part-B	
		<u>PART -A</u>	
1.	a)	Explain the temperature dependence of V-I characteristics of P-N diode.	(3M)
	b)	List the applications of Varactor diode?	(2M)
	c)	Compare the rectifier and regulator.	(2M)
	d) e)	Explain the Break down in transistor. Draw and explain the hybrid model of a CB configuration.	(3M) (3M)
	f)	Explain the terms Peak voltage and Valley current in UJT.	(2M)
	g)	Why FET is called a voltage operative device? Explain.	(2M)
	h)	List the advantages and disadvantages of fixed bias method.	(2M)
	i)	Compare all the transistor amplifiers.	(3M)
	-)	PART -B	(01.1)
•	a)	Show that the Fermi energy level lies in the center of forbidden energy band for	(10M)
		an intrinsic semiconductor.	(6.5)
	b)	Find the concentration of holes and electrons in a p-type silicon at 300K	(6M)
		assuming resistivity as 0.02Ω -cm. Assume $\mu_p = 475 \text{m}^2/\text{V-sec}$,	
		$n_i = 1.45 \times 10^{10} / \text{cm}^3$.	
	a)	Explain the construction and working of varactor diode?	(10M)
	b)	The energy gap of Si is 1.1 ev. Its electron and hole mobilities at room	(6M)
		temperatures are 0.15 and 0.06 m ² /V sec respectively. Evaluate its conductivity.	,
	a)	Derive the expression for Ripple factor for full wave rectifier with L-section	(8M)
		filter. Explain the necessity of bleeder resistor	
	b)	A sinusoidal voltage whose $V_m=24V$ is applied to half wave rectifier. The diode	(8M)
		may be considered to be ideal and $R_L=1.8K\Omega$ is connected as load. Find out	
		peak value of current, RMS value of current, DC value of current and ripple	
		factor.	
	a)	Explain the working principle of MOSFET in enhancement and depletion	(9M)
		modes.	,
	b)	The reverse saturation current of the Ge transistor is $2\mu A$ at room temperature of	(7M)
		25°C and increases by a factor of 2 for each temperature increase of 10°C. Find	
		the reverse saturation current of the transistor at a temperature of 75°C.	
	a)	Compare h-parameters with Y-parameters and explain.	(8M)
	b)	Design a collector to base bias circuit for the specified conditions: V _{cc} =15V,	(8M)
		V_{CE} =5V, I_{CE} =5mA, and β =100.	
	a)	Compare CB and CC amplifiers	(8M)
	b)	Analyze CS-FET amplifier	(8M)
		1 of 1	